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Preface

These are notes taken by W. Haemers and H. Wilbrink of an introductory

course on classical groups {over commutative fields)‘givén in the

spring semester 1978 at the Department of Mathematics of the Technological

University Eindhoven.

Thg main goal was the determination of the normal structure {assuming é
positive index in the unitary and orthogonal cases) by the method intro- g
duced by Iwasawa for the linear case and applied by Tamagawa to orthogonal -
groups.

Because of time considerations orthogonal groups over fields of characteristic 2
were omitted. .

Some discussion of the sporadic isomorphisms is included. ‘
An appendix by D.E. Taylor contains a uniform treatment of generic isomorphisms

and a construction of the Suzuki groups.

D.G. Higman 4




1. Group actions and Iwasawa's lemma

Let G be a group with identity 1, say. An action of G on a set X # § is a map:
G x X~ X, (g,x) > gx, such that
1) (gh) % = g(hx)

(g,h ¢ G, x € X} .
2} Ix = x
One can easily verify that an action of G on X is equivalent to a homomorphism:
G+ EX, where Ex denotes the symmetric group on X. The kernel of an action is
the kernel of the corresponding homomorphism. An action is faithful if the ker-
nel is trivial (= {1}). If the action is faithful then G is isomorphic to a
subgroup of EX, i.e. a permutation group. If the action has kernel K then G

induces a faithful action of G/K on X.

A G-set (G-space) is a set X # @ with a given action of G on X. Two G-sets X

and Y are isomorphic iff there is a bijection ¢: X + Y such that p{gx) = gg(x)
(g e G, x ¢ X). Two actions of G are equivalent if the corresponding G-spaces
are isomorphic. |
A subset Y c X is stable or a G-subspace {if Y # @) if gy ¢ Y for all y ¢ Y,
g e G. If Y ¢ X is stable and ¥ # @ then G acts on Y.

Example. H = {z ¢ € | Im(z) > 0}, the upper half plane of €.
SLZUR) iz the group of all matrices [2 g] with a,b,c,d ¢ R and ad - bc = 1,

Let this group act on € := € y {»} in the following way; if g = [: g]e SLzﬂR)
az + b
cz + d
which implies that H is stable under SL2GR). The kernel of this action is {+I},

and z ¢ € then gz := . It follows easily that Im(gz) = Im(z)/lcz + d|2

S0 PSLZGR) = SLZGR)/{iI} acts faithfully on T. SLz(Z) is the subgroup of SLZGR)

with coefficients in F. G := SLz(i)/{tI} is the modular group. One can identify

SL2GR) with SLGRZ), the group of all linear transformations of]R2 with determi-
2

nant 1. SLHR2) acts on the points of the projective line based onIR, i.e. the

1 = dim subspaces of IR2.

Let X be a G-space, x,y¥y ¢ X. Define
X~y e (gx = y for some g e G} .

Then ~ is an equivalence relation; the equivalence classes are the orbits, The
action is transitive if there is only 1 orbit (= X). Each orbit is stable and
transitive, each G-space is uniquely partitioned into a disjoint union of tran-
‘sitive G-spaces. Let X be a G-space, H < G, ¥ ¢ X, then HY := (hy | h «H, vev},
hy := {h}Y etc. The orbit containing x ¢ X is Gx. If H £ G then G/H s={gH| ge G}
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1.2,

Proof. Take the map gx + g6 for the isomorphism.

is a transitive G-space according to (g,hH) ¥ (gh)H, the natural action. Its

kernel is the core of H in G, i.e. the join of all normal subgroups of G con-
tained in H, A G=space is homogeneous if it is isomorphic with one of the form
G/H for some H < G.

Let X be a G-space, x€ X, YCS X, Y ##.

Gx :={gea I gx = x} is the stabilizer of x in G,

Gy = N (¥) := {ge G| gr = Y} is the (set-wise) stabilizer or

normalizer of Y,

G[ 7 = cG(Y) := {g e @ ] gy =g, Yy e ¥} = n G_1is the pointwise

X yeY

stabilizer or centralizer of Y .

For Hc G, g € G, % .= gHg 1 is a conjugate of H in G.

The following properties are obvious:

a) Gx' GY' G[Y] ére subgroups of G.
G = = € -
bl &, Six1 T Cr{xd] (x < X)
a) G[x] is the kernel of the action of G on X.
d) GY acts on Y with kernel G[Y]' The corresponding permutation group will be

denoted by GY so we have an exact segquence

Y

>
1 +G GY -G -+ 1

[yl
. Y \ Y
with G° a permutation group on Y, G~ ~ GY/G[Y]'

In particular we have an exact sequence

X . X . 5
1~ G[X] >G >G> 1 with G = X

(An exact sequence is a sequence of homomorphisms ...-+G 2r k K=+ ...
such that image of 9 = kernel of V.

. N e g
Fo; example 1 + GFY1 -+ GY means that the homomorphism G[Y] GY is injec
tive etc.)

g9 - 9 — g = -
e) (GX) - ng L (GY) - GgY r (G[Y]) = G'[ng .

Let X be a G-space, x € ¥ then Gx ™~ G/Gx as G-spaces.

As a corollary we have
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Every transitive G-space is homogeneous.
If H,K £ G then G/H and G/K are isomorphic G-spaces iff H and K are conjugate.

Procf. If H = glK let the isomorphism ¢ be defined by

p(gH) := gglK, ge G .

Conversely if ¢ is an isomorphism and ¢(H) = glK it follows that H = K. [

Assume G tra X (i.e. G acts transitively on X). An (imprimitive) block is a
subset B of X, such that g8 n B # @ implies gB = B for all g ¢ G. The blocks
@, {x}, X are trivial blocks. The action is imprimitive if there exists a non-

trivial block, primitive otherwise. If B # § is a block, then {gB | g ¢ G} is
a partition of X into blocks and G acts transitively on this set of blocks ac-
cording to {g,hB) = ghB.

Suppose G tra X and let x ¢ X. The map Bi+ G_ is an isomorphism of the lattice

B
of blocks containing x onto the lattice of subgroups of G containing Gx (the

inverse map is H H_ for all G <HES G).
As a corollary to 1.5 we have

G pri X (i.e. G acts primitively on X) iff Gx is a maximal subgroup for some
(hence for all) x ¢ X.

If Gpri X and N 9 G then N < G or N tra X.

[x]
Proof. Take x ¢ X and suppose N g G[x] then N £ Gx (since N < Gx implies

N =9 < ng = ng for all g € G). Hence, by 1.6, G = NGx. If g ¢ G then

]

g = nh for scme n € N, h ¢ G_ so gx = nhx = nx. C

Let X be a set and k ¢ N, k =2 1. We denote by xk the k-fold Cartesian product
of X with itself, [i] the set of all {xl,...,xk) € Xk with X, # xj (1<i<jsk),
(i) the set of all k-subsets of X.

An action of G on X induces actions on Xk, [ﬁ] and (:}.

X
Remark. Take (xl,.i.,xk) € [k]. The set'{(yl,...,yk) | {yl,...,yk} =
= {xl,...,xk}} @ [k] is an imprimitive block for Ly- The action on this set

of blocks is equivalent to the action on (:).

L E A



1.8.

1.9.

—m . e e e e - — e TR, v T e !Wﬂ’ R

Let X be a G-space and k eN, k =2 1. The action is regular if G tra X and
Gi =1, for all x ¢ X (note that if G is faithful and regular on X, then for
any x € X the map g» gx is a bijection of G onto X). The action ig k«fold
transitive or k-transitive (notation: G k-tra X) if G tra [:]. The action is

sharply k-(fold) transitive if G acts regularly on [:]. The action is k~homo-

geneous if G tra (i). In particular G l-tra X means G tra X. Clearly & k-tra X
implies G (k- 1)-tra X. .

G 2-tra X implies G pri X.
Proof. Let B be a block, |B| > 2. Take x,y ¢ B, x # y and let z & X\{x}. There
exists a g ¢ G such that gx = x and gy = z. From x = gx € B n gB it follows

that B = gB and so 2z = gy ¢ gB = B i.e. B = X. ]

Let G be a group. The derived or commutator subgroup G' of G is the intersec-

tion of all N ¢ G such that G/N is Abelian. It follows that

-t -1
G' = <[g,h] := ghg "h | g.h € G> ,

the group generated by the commutators of G. Of course G/G' is Abelian, and
G is Abelian iff G' = 1. We say that G is simple if the only normal subgroups

of Gare 1 and G itself.

(Iwasawa's lemma) . Let G prl X, X ¢ X. Assume there exists A(x) 4 Gx' such

that A(x) is BAbelian and G = <gA(x) [ g ¢ G>. Then

a) N 9 G implies N < GFXI or N 2 G'.

b) If G = G' then G/GFX1 is simple.

Proof.

a) ITfFN £ G[X] then N £ GX s0 G = NGx' We claim: G = NA(x). Indeed, let geG,
since g = nh for some n ¢ N, h ¢ Gx we have gA(x) = nhA(x) = nA(x):SNA(x)

and so G = <9A(x) | g € G> < NA(x) < G i.e. NA(x) = G. Now G/N = NA(x)/N =
B(x)/N n A(x), which is Abelian, so N z G'.
[x] then N = N/G{X] with G[X] [x]

hence by a) N 2 G', From G = G' it now follows that N = G, i.e. ﬁ==G/G[x1.D

b) Suppose N 9 G/G SN 9G. If N# 1 then N£G
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The general linear group

Let V be a vectorspace over a fieldTF, dim V =n, 2 £ n < ®. GL{V} := the
group of all non-singular linear transformations of V. This section is devot-

ed to finding the normal subgroups of GL(V).

n
Let Vl""'vn be a basis of V, T ¢ GL(V), T(vi) = jzl ajivj' with aij cIF.
The map TI> A = (aij) is an isomorphism of GL(V) onto GL(nJF) := GLn(JF) 1=
the general linear group (of degree n over F) := the group of all non-singu-

lar n x n-matrices. Let T be the multiplicative group of the non-zerc ele-
ments of IF. The determinant map det: GL(V) ST is a group homomorphism and
is onto. The kernel of det is SL(V) = {T ¢ GL(V) | det T = 1} so we have an
exact sequence

1 > sL(v) +an(v) SEF* 51
and GL(V} /SL(V) :]F* is Abelian (hence SL(V} = GL(V}'). SL{V) ~ SL(nJF) :=

SLnGF) = the special linear group {cof degree n over F) := the group of all

n X n-matrices with coefficients inF and determinant 1. GL(V) acts faithful-

# .= v\{0}, GL(V) < I

v

ly on v

#

GL(V) acts faithfully and regularly on the set of all ordered bases of V. Thus

there is a 1-1 correspondence between GL(V) and the set of ordered bases of V.

1f JF| = g < = then |GL(V)| = # ordered bases of V= (q"-1) (¢" - q) (qn—qz)
@™, so
() o GL(V) | () =n i
laL(v) | = q E (@ -1, [suw)]==l=q I (@ -1) .
i=1 ™ | i=2

If x . V# then {ax | a « JF*} is an imprimitive block. The corresponding ac-
tion of GL(V) on blocks is equivalent to the action of GL(V) on the points of
the projective space based on V i.e. on the 1-dimensional subspaces of V. Note
that if ﬁE‘| = 2, then the action of GL(V) on V# is equivalent to the action

on the points of the projective space.

The projective space PV based on V is the lattice of subspaces of V. If V has

dimension n then PV has dimension n- 1. The subspaces of V are the linear va-

rieties or flats of PV, The codimension of a k-flat (k +1 dimensional subspace

of V) := codimension of the corresponding subspace (= n-k-1). Dictionary:
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PV v
point 1-dim subspace
line 2-dim subspace
plane 3-dim subspace

k-dim 1lin varlety} {k +1)-dim subspace

k-flat
hyperplane hyperplane (through Q)

A line of PV contains [IF| + 1 points. GL(V) acts on the k-flats of PV for
all k. Look at the action on the points ((0-flats) of PV. We have an exact

sequence
1 + 2(V) - GL(V) -+ PGL(V) =1 ,

where Z(V) is the kernel of this action, and PGL(V) := GL (V)PP ~ aL(v)/z(v).

PGL(V) is the projective general linear group (of degree n over IF).

*
. Z(V) = all nonzero scalar transformations {aI | a e F }.

Proof. Clearly {al a E]F*} < Z{V}. Suppose Vv, ,...,Vv_ 1is a basis of V. Let
il 1 n

T be an element of Z{(Vv). Then T(v,) = a,v, for some a, ¢ Eﬁ, and T{v, t...+Vv_ ) =
i i'i i 1 n
= a{v, +...+v ) for some a ¢ F. Hence a = a, = a, =...= a_ and T = al. [
1 n 1 2 n
PGL(V) ~ PGL(nJ) := GL(nF)/{aIl | a ¢ F"}.
if bF‘ = g then
(" n
GL G 2 i
lpanw) | = 1@ W] 5y =q? 1 (dt-b

Tz | g - D

i=2

Z{Vy) = center of GL(V) = centralizer of SL{V}) in GL(V). (If G is a group,

H =< G then CG(H) := {g ¢ G | gh = hg, Vh ¢ H} is the centralizer of H in G;
CG(G) is the center of G.)

R < < vi). GL(n,F) cen—
Proof. Clearly Z(V) CGL(V) (GL(V)) CGL(V) (SL{V)). Suppose A ¢ (n,F)

tralizes SL(n,F) then A(I + Eij) = (I + Eij)A for all i # 3. (E:Lj is the ma-
trix with a 1 in the (i,j)-position and 0's elsewhere.) Hence AEij = EijA
for all i # j and so A = al, a € F. O

SL{V) acts on the points of PV. We have an exact sequence
1+ 2y(v) SL(V) = PSL(V) - 1
. . points
where ZO(V) is the kernel of the action. PSL(V) = SL(V} ~ SL(V)/ZO(V)

and PSL(V) # PGL(V) < Lpts‘



2.6. ZO(V) = 2{(V) n SL{V) = center of SL(V) = {aI ] ac ]F*, a = 1} ~ the group
of the n-th roots of unity inTF. Define Z(n,F) := {aI | ac« ¥} = the group

of all non-singular th X n scalar matrices, Zo(n,‘lF) := Z{n,F) n SL(n,JF) then
PSL{V) ~ PSL(nI) := SL(nF) /Zo(n.IF‘) .

PSL(nIF) is the projective special linear group of degree n over F.

n

(;) n .
1
2.7. 1f |F] = gq then | psn(vy| = E[SL(V)I = é— g o (@"-1) where d = {n,q-1).
i=2
*
With (F )= {a” I ac F} we have the following commutative diagram in which

the rows and ceclumns are all exact. (Notice that 2 (V) :Ji"*.)

1 1 1
4 4 4

t > FHs ¥ o> F/EH o+ 1
4 4 4

1 -» zZ{(Vv) - GL{V) > PGL(V) + 1

4 + +

1 - ZO(V) -+ SL(V) -+ PSL{V} > 1
t 4 t
1 1 1

If |]F] = q < ® we sometimes write GL(n,q) instead of GL(n )} etc. We have

seen: o
(g n
|6L(n,@)| =gq m (g -1)
i=1
n
(2) n i
|SL(n,q)| = |PGL(n,q) [ =gq T (g -1)
i=2
1 (g) n i
| psL(n,q) | =34q I (g-1,d=(nqg-1).
i=2
Remark. Notice the order coincidence ISL(n,q)| = |PGL(n,q)l . In general (i.e.

iff d = {n,q-1) # 1) PGL(n,q) ¥ SL(n,q) since the center of PGL(n,q) is 1.

An n-simplex in PV is a set of n+1 points no n of which are in a hyperplane.

For any n-simplex {Pl,. R 1} we can choose a basis Vyre..ov of V such that

e

P, = <v.,>, 1 £4i < n, and P
i i n+

larly on the set of ordered simplices.

1 = ﬁz?“l vi:». This implies that GL(V) acts regu-

The following properties are easy to verify:
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2.8. GL(V) 2-tra pts of PV.
If n2 3 then GL{V) and SL(V) not 3-tra on pts of PV (there are collinear and
non-collinear triples of pts).
If n = 2 then GL(V) sharply 3-tra pts (in this case we usually view PV as the
set T U {»} in such a way that the point < (xi,x2)> corresponds to xl/x2€]E‘ if

X, # 0 and <(1,0)> % ®_ Thus (: g) € GL(V) induces the M&6bius transformation

ax + b . ax + b ;
y 22 T Py ¢ W 2% + b _ _ _
(xr =5 ¢ PGL(V). Notice that (xv ——-——2) € PSL{V} iff ad -~ bc =0 (= a

square inT)}.

If g is even then PSL{2,q) = PGL(2,q) acts sharply 3-tra con pts.

If g is odd then |PSL(2,q)| = 4| PeL(2,q)| and PSL(2,q) is not 3-tra on pts.

~1 (4) then PSL(2,g) is 3-homogenecus.(Let Xy XXy be threedistinctpts

If g

of F u {~}. Define 999, € PGL{2,q) by
x - x3 X - x x - X X - X
. — r gaix) = .
1 X - Xg 2 X 1

gl(X) = X, = X
then gl({xl,xz,x3}) = g2({x1,x2,x3}) = {0,1,0}. Since -1 # [J either

(:«:1 - x2) (x2 - x3) (x3 - xl) =[] or —1(x1-x2) (xz-xB) (x3—x1) =[] i.e. either

g, or g, is in PSL(2,q).).
SL(V) acts 2-tra on the pts of PV.

The normal structure of GL(V)

* *
Let V denote the space of all linear functionals of V. Let c € V, ¢ € V and

define the map T = T(p ot VvV hy x b % + p(x}c. Clearly T is a linear trans-
’
formation of v, and T = 1.
0,c
2.9. If ¢(c} = -1 then the kernel of 1 = <c>.

2.10. If g¢(c) # -1 then the kernel of v = {0} hence T ¢ GL(V).

Proof. Take % ¢ ker T, then x = -g(x)c hence x ¢ <c>; kernel of 1# {Ole
ker 1 = <¢c> @ ¢c = -g(clc & ¢{c) = -1,
The linear transformation T is called a transvection if ¢(c) = 0. If ¢ # 0

then the kernel of g is a hyperplane. This hyperplane contains ¢ iff T(p c is
r

a transvection. & transvection Tcp o has matrxix
r

1 ) (vn)

~



n-1 € ker p and v, = c.

The determinant of a transvection equals 1, hence SL(V) contains all transvec-

if we choose a basis vl,...,vn of Vv such that vl,...,v

tions. On the other hand all matrices

-
4
* e % *

~ and -

x*
*
.
*
—
*
.
*
’
1
’
’

*® v
,
[y

representent transvections.
*
In particular I + aEij' a ¢F, 1 # Jj, represent transvections. If pl{c) ¢ {0,-1}

T c is called a dilatation. If vi,‘...,vn is a basis of V such that, viezker )
, S—alaton

(1 i< n-~1) and vn = ¢ then the matrix of the dilatation rt c is

r

I+gp(c) |

On the other hand any matrix

with * # 0,1 represents a dilatation. The determinant of T equals 1 +g¢{c) ¢ {0,1}

s0 T ¢ GL{V)\SL(V). The following properties are easily verified,
2,11, a) 7 = T@ c fixes every vector in the kernel of g,
’
by v = T$ c fixes every subspace containing c.
r
*
2,12, a) 1 = (a e ).

g,ac Taq:,c

b) If (c}) =0 then 71 T T .
¢1 ml,c mz,c ¢1+¢2,c

C) For any T ¢ GL{V): T

(Tm'c) =T
Let H be a hyperplane of PV, let P be a point in H. Define the set of trans-—

vections i= {1 p(H) = 0, <c> = P}.
XH,P ¢,C
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2.18.

2.19.

2,20,

2.21,
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T
< b ]
X < SL(V)H P and xH o GL(V)H P for for all TeGL(V).

H,P , ,P o for (X p) = Xpmy e

XH p = {F,+) by result 2.12.

Let L be a line such that L n H = P then i p acte faithfully and regularly on
r
the points of L\{P}.
Proof. Suppose P, @ and R are distinct points of L, P = <p>, Q = <g>,
R = <ap + g>. Choose ¢ ¢ v" such that H = ker p and ¢(gq) = a then T < X,
9P P
and T@ P(q) =g+ ¢{glp=g +ap « T (Q) =R, If T ¢ X fixes any point

' ¢.pP
not on H then 1 = 1. Suppose T fixes Q ¢ H, ©

H,P .
<q>, t(gq) = ag for some acelF

then t(q) = agq = q + gl(glp i.e. gp{g) = O hence ¢ = 0 and so 1t = 1., O

*
Let P be a point. Define XP 1= {Tm o ] p € V, ple) =0, P = <c>}.
!

X, < SL(V),, X, 9 GL(V) since Tix) for all T ¢ GL(V).

e = r(p)

xP = U XP,H’a partition (i.e. xP,H n XP,H =1, H1 # H2).

H 1 2

P<H
X, acts regularly on the points different from P of any line L through P.
Proof. Let H be a hyperplane such that Hn L = P, then XH p tra L\{P}, and
_ r
XH’p < Xps hence X, tra L\{P]. Suppose T « X5 fixes ¢ € L, Q # P, From 2.17
we see that 1 ¢ X p for some hyperplane H containing P. If L. € H then t

r

acts trivially on H and so T acts trivially on L, If L €H then T = 1 by
2,15. U

Let ¢ ¢ V, P = <¢>, Define the homomorphism &: v oo by ¢{¢) = 9(c), then
XP ~ kernel ¢,
Proof. The isomorphism is given by T¢ c1+ P O

’

GL (V) is generated by the transformations To,c '€ v¥, c ¢ W{0}. SL(V) is
r

generated by the transvections 1 ¢ ¢ v*, ¢ ¢ v\{(0}, g¢(c) = O.

P
Proof. Any A ¢ GL(nJ) can be reduced to the form 10 (where = = 1 iff
0 *

A . SL(nT)), by elementary row operations of the form: add a multiple of
one row to a different row. Each such operation can be obtained by multipli-

cation with a matrix of the form I + aEij, i # 3. O

As a corollary we have SL{V) = <TXP | T € SL{(V)>, indeed ?xp = XT(P)’ and

SL(V) is transitive on the points.
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We have the following structure

GL(V N
~TF , Abelian
SL (V)
PSL (V)
Z(V}) n SL(V) = ZO(V
central

1

We shall obtain the simplicity of PSL(V) from Iwasawa's lemma applied to the
action of SL(V) on the points. We have SL(V) = <TXP I T € SL(V)> with

xP 2 SL(V)P and (from 2.19) X_ is Abelian. So we still have to show:

P
1) SL{V) is primitive on the points, and
2} SL{V) = snL{v)'.

SL{V) acts 2-transitively on the points.
Proof. We show that SL(V)P is transitive on the points different from P, Take
distinct points P, Q and R. Suppose P, Q and R are on one line L. Take a hy-
- < .
perplane H such that H n L P, then XH,P takes ¢ to R, and xH,P SL(V)P
Suppose P, Q@ and R are not collinear. Let I be the line through Q and R. Take
a point S € L, 5 # Q,R and a hyperplane H containing P such that Hn L = S,
then X, o fixes P and moves Q to R. O
'S

. In case n = 3 then SL(V) = SL{V)"'.

Proof. IT + aB,, T +DbE;, ] =T + abE, for all a,b ¢ F*, i, and k distinct

{note that EijEk£ flo, and EijEjk = Eik for all distinet i,j,k and L. In par-

ticular (I + aE ;) =1 - aE, for all i # j). With respect to a suitable ba-
O

sis, every transvection can be written as I + abEi

3"

If n=2and [F| > 4 then SL(V) = SL(V)'.

Proof. Let T = ! T be a transvection. Take a eZF* such that a2 #£ 1. put
e a 0O 1 b
b = az_ ) then © = [ & a1} lo 1 1. 0O

If (nF} # (2,GF(2)), (2,GF(3)) then PSL(n,JF) is simple.

Proof. Apply Iwasawa's lemma. [l

If (n,F) # (2,GF(2)), (2,GF(3)}) and N s GL{V) then N 2 GL(V) iff N £ Z(V) or
N = GL(V}' = SL{V).

a2 it T T et B

R A R C LN
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Proof.

4) GL(V)' = SL(V). Indeed GL(V)/SL(V) ~T is abelian, hence GL(V)' < SL(V) =

= SL(V)' £ GL(V)"'.

b) If N < 2(V) then cbviously N 9 GL(V). If N = GL(V)' then N/GL(V)' 3 GL(V)/
GL(V)', which is Abelian, so N 9 GL(V}.

c}) Let N 2 GL(V), N ¢ Z(V). Define N := N2(V)/Z(V) S PGL(V). Suppose Nn SL(V) <
ZO(V) then N n PSL(V) = 1 and so N and PSL(V) commute elementwise. Moreover
N is transitive on points. Fix a point P, take G € PSL(V)P, n € N then
Gn(p) = nG(p) = n(p), so PSL(V)P acts trivially on the po;nts, a contradic-
tion. Hence N n SL(V) ¥ ZO(V) and so N 2z SL{V}) by the first part of Iwasa-

wa's lemma. g

Order coincidences and sporadic isomorphisms involving PSL{n,q) and Am

1) PSL(2,2) ~ 23 order: 6

2) PSL(2,3) ~ A, 12

3) PSL(2,4) =~ PSL(2,5}) =~ Ag 60

4) PSL(2,7) =~ PSL(3,2) 168
5) PSL(2,9) = B 360
6) PSL(3,4) £ PSL(4,2) x Ag 20160

Result 1, 2 and PSL(2,4) ~ A_. are straightforward. Using Sylow's theorem

one can prove that there is znly cne simple group of order 60 and 168 ({cf.
71, p. 183-185), this proves 3) and 4). It is easy to prove that the centers
of the sylow-2 subgroups of PSL(3,4) and PSL{4,2) have order 4 and 2 resp.,
this proves the first part of 6), For the details, and for result 5 we refer
to [5] or [7].We will now sketch a proof of PSL{4,2) =~ Ag due to A. Wagner
{on collineation groups of Projective Spaces I, MATH. Z. 76, 411-426 (1961)) :

the projective plane of order 2 { Fano plane ) can be represented by the arfay

1234567
2345671 .

4567123 , U
[, . .

Let A7 act on this array to produce TEEERETETT’= 15 different projective
planes of order 2. pefine a new incidence structure P, whose "points" are the
15 planes, and whose "]lines” are the 35 triples out of {1,...,7}. A "line" is
incident with a "point" if the corresponding triple represents a line of the
corresponding Fano plane. By verification it follows that P is a projective
space, hence P = vG(3,2), whose automorphism group is PSL(4,2) . Thus we have
A7 < PSL(4,2) with index 8, hence PSL{4,2) = 28’ so PSL(4,2) < AB' Alternative
proofs of all sporadic isomorphisms involving alternating and classical groups

will be given at a later date.
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We remark on some natural questions arising from our geometrical discussion
of GL{V). (Details can be found in [1], [3] and [6].)We assume n = 3. For the.
case n = 2 we refer to [3].

A collineation of PV is a permutation of the points which induces a permuta-
tion of the lines. The group of all collineations of PV is denoted by Coll PV.
Of course PSL(V) < PGL(V) £ Coll PV,

Questions
1) Wwhat is the analytic description of Coll PV?

2) what is the synthetic description of PGL(V) and PSL{V)?

About 1). Let T r AutF. A t-semilinear transformation of V is a map T: V » V

such that T(x+y} = T(x) + T{y), T(ax) = t(a)T(x) for all x,y ¢ V, a eZF*.
If S U~semilinear and T T-semilinear then ST(ax) = S(t{a)T(x})) = ot(a)sST(x),
hence ST is ot~semilinear.

We define TL(V) := the group of all non-singular semilinear transformations

of V. TL(V}) acts on the points; Z(V) is the kernel. We have:

1
4

Aut IF
3

1 » Z2(V) » TL(V) » PTL(V) » 1 (exact)

4

GL (V)
+
1

1) PTrL (V) Coll PV.

About 2). A collineation ¢ of PV is central if ¢ fixes all points of scme
hyperplane H and all lines through some point P. If ¢ # 1 then H and P are
uniquely determined and P together with the points of H is the complete set
of fixed points of v. H 1s called the axis and P the center. A central colli-
neation is called an elation in case P c H. A projectivity is the product of

central collineations, a perspectivity is the product of elations.

2) A central collineation is induced by exactly one linear transformation of
the form 7 .

9.C

3) PGL(V) is the group of all projectivities. PSL(V) is the group of all pers-

pectivities.
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Pairings and bilinear forms

a) Dual spaces

b)

LetIF be a field and let V and W be vector spaces over . Define Hom(V,W) :=l
Hqu(V,w) := the vector space of all limear transformations from V to W (ad-
dition and scalar multiplication defined pointwise). Suppose the dimensions

of Vv and W are finite, let vl,...,vm and w ,wn be bases for V and W res-

17"

k) = ijwi defines Tij ¢ Hom(V,W) and {Tij | 1 <1i<n,

1 £ 3 < m} is a basis of Hom(V,W). So the dimension of Hom(V,W) equals mn.

pectively. Then Tij(v

In case W =1IF we write V* := Hom (V,IF} and V* is called the dual space of V.

* *
If vl,...,v is a basis of Vv then the dual basis Vl""’vm of V*is defined

* 1 8

by v;(vj) : Gij (i,3 =1,...,m). The map vi|+ VI determines an isomorphism
of Vwith Vv . If the dimension is infinite then V and v" are not isomorphic,

*k
There is a natural isomorphism o of V onto a subspace of V , namely

o{x){f} = £f(x), xeV, fe v

~EE . . .
If the dimension of V is finite then ¢g: V =+ V {i.e., 0 is an isomorphism of

VvV and V**).

Pairings

Let V and W be finite dimensional vectorspaces over the field F. Bil(V,W) de-

notes the space of all bilinear maps f: V x W +TF (Example: W = V*; (x,9) >

- - - o . L RS i T R AT e R R e . T

@lx}).

Let vl,...,vm and wl,...,wn be bases of Vv and W resp., let £ ¢ Bil(V,W) and

A the m X n matrix (f(vi,wj)). The map £ » A is an igomorphism of B1l{V,W)
T.=m l,=n

and:Fan. Define new bases for V and W by Vi Zj:l Pijvj and LA Zj:l qijwj'

Put P = (pij), Q= (qij) then (f(vi,wé)) = PAQ . We speak of £ ¢ Bil(V,W) as
a pairing of V and W. Fix a pairing £ ¢ Bil(V,W). We define

L. :={x eV | £(x,y)

£ 0, Yy ¢ W}

and

n

R, :={y e W | fi{x,vy) 0, ¥x ¢ vV} ,

£
the left and right kernel of f.

We now have the linear maps

*
P VW, wf(x)(y) := f£(x,y)

N xeV, yvyveW.
be: WV, o (y) (x)

£ (er)

Note that the kernel of P = Lf £

ing commutative diagram of isomorphisms:

and the kernel of wf = R_.. We have the follow-
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3.3.

3.6.

Proof. The map f
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£ e wf «
Bil (V,W)¢e— > Hom(V,W")
.I>£I .
Bil{W,V)e— Y& Hom{W,V } .

Again fix £ € Bil(V,W). Let H £ V, K £ W and define

1

H™ :={y e W | £(x,y) = 0, Vx ¢ H}
and N

K = {x eV I f(x,y) = 0, Yy ¢ K} .
H" < W; H, < H, implies HT > HL, VH,H,,H, < V
i - U J_l f' St T

. , , <
f < V: Ki < K2 implies K1 > KZ' VK,KI,K2 < W.
Voo Rf‘ W = Lf.
L L. 1
(H) 2z H, VH 2 V; {(K)” 2 K, VK < W.

- . * . .
If H £ Vv then there is a linear injection W/Hl + H , so codim Hl < dim H.

1t H x W/Hl +~IF, (xf,H‘L + y) = f{x,y) is a well defined pair-

ing of H and w/H'. Suppose HY + y € Rf then £(x,y) = 0 for all x ¢ H. Hence

1
y ¢ gt so b + y = Hl = 0 in W/Hl. This implies Rf = 0 hence wf : W/Hl > H
R . 1 1
is injective. 0
If L_ = 0 and K £ W, then we have an injection J'I( > (W/K)* so dim lK::codim K.

£
Proof. The map f2: lK x WK +IF, (x,K+y}) 1 £(x,y) is a well defined pairing.

Suppose % € L

£ then £(x,y) = 0 for all y ¢ W. Hence x ¢ Lf so x = 0, This

implies Lf ==0? hence Gp * K+ (W/K)* is injective. a
2 2
L . J B
. If L. =0 and H £ V then codim 8 = dim H and (H) = H.
£ Lo (3,3) 1 (3,2) (3,1) 11

Proof. dim ~(H™) < codim H 2 dim H 2 dim “(H”) . Hence

codim H' = dim H = dim * (@Y. n
. If Lf = 0 then codim Rf = dim V.

Proof. Rf = Vl, so take H = V in 3.4. M

codim Lf = codim Rf.

Proof. The map fO: V/Lf x W, (Lf-kx,y)t+ f(x,y) is a well defined pairing.

LfO = 0 and RfO = Rf, hence dim V/Lf = codinm Rf by 3.5. 1]

Call f nondegenerate if Lf = Rf = 0 (this is eguivalent to dim V = dim W

and det A # 0 for any matrix A of f).

Vin i,



c)

3.8.

3.9.

. If £ is a nondegenerate pairing of V and W, then

i) dim V = dim W.
1) g VT W' and e W F v*.

codim Hl, for all H

iii} dim H = <= V.
dim K = codim J'K, for all K £ W.
iv) ‘g% =8, for all H < V.
(‘)7 = K, for all K < W.
v) H H—Hl is a 1-1 inclusion reversing map from the subspaces of V to the

subspaces of W. The inverse is K > lK.

Example. The pairing of Vv and v" definea by (x,A) & A(x) is nondegenerate;

*%k "
g: V>V is o (the natural iscmorphism}; y: V* - V* is the identity.

Bilinear forms

Let V dencte a finite dimensional vectorspace over the field F. Let f be a

bilinear form on V (i.e. a pairing of V with V). Let vl,...,vn and vi,...,v

n
n
b . f l= . .= - - -
e two bases of V such that vi Zi=1 pijvj, i 1, ,n. Put P (pij),
A= (f(vi,vj)) then (f(vi,vé)) = PAP®, Det A, determined up to a nonzero
square inI, is called the discriminant of f.
The following are equivalent:
f is nondegenerate;
L =0;
f 0
Rf=0;
v 3y
Pt ;
£ ~o K
gbf:V—?»V;
The discriminant of £ # 0,
If f is a nondegenerate bilinear form on V and H £ VvV, then dim H = codim gt =
codim lH, J'(HJ') = (lH)l = H and the map H~» Hl is an inclusion reversing per-

mutation of the subspaces of V with inverse H v g (in projective terminology:
the map H Hl is a correlation of PV (n = 3)).

n t n
Example. Vv =R, f(x,y) = xy = Zi=1 xiyi,
and y are orthogonal. Take H s:m? then B! = lH is the orthogconal complement

£(x,y} = 0 1ff f(y,x) = 0 iff x

of H. @im H + dim H* = n, H n HY = 0, ®R™ = H o u'.
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In general we say x is orthogonal to y, notation x L y, iff f(x,y) = 0. It
can happen that x L y whilst y [ x. We call f reflexive if f(x,y) = 0 iff
f{y,x) = 0 for all x,¥y ¢ V {(so 1 is a symmetric relation). If f is reflexive
then 'H = Hl for all H £ V. It is possible that Hl n B # 0 therefore we pre-

fer to call H' the perp(endicular) of H (rather than the orthogonal comple-

ment) .
If a nondegenerate bilinear form f on V is reflexive, then the correlation

1 . .
HkF H, H £V has period two, i.e. HJ"L

polarity.
Let £ ¢ Bil({V,V) then

= H. A correlation of period two is a

i) f is symmetric if f(x,y) = £(y,x) for all x,y ¢ V.
ii) f is skew-symmetric if f£(x,y) = -f(y,x) for all x,v ¢ V.

iii) £ is alternate (symplectic) if f(x,x) = 0 for all x ¢ V.

3.10. If f is alternate then f is skew-symmetric.
Proof. 0 = f(x+y,x+y) = f(x,y) + £(y,x), for all x,y ¢ V. 1

3.11, If char. P = 2: f is symmetric iff f is skew-symmetric.

3.12, If char.F # 2: f is alternate iff f is skew-symmetric.

Proof, "e": f(x,x) = -f(x,x), hence 2£(x,x) = 0, thus f(x,x)

I
o
O

3.13. £ ¢ Bil(V,V) is reflexive iff £ is symmetric or alternate.
Proof. "&": It is clear that symmetric and alternate forms are reflexive.

"=": Assume f is reflexive. Then for all a,b,c € V:
f(a,f(a,c}b - £f(a,b)c) = f(a,c)f{a,b) - f£f{a,b)f(a,c) = 0,
hence £(f(a,c)b - f{a,b)c,a} = 0, i.e.
{*) f{a,c)f(b,a) - f£(a,b)fl{c,a) = 0, for all a,b,c e Vv .
Take a = c in (*): f(a,a) (f(b,a) - f(a,b)) = 0. Thus
{(*%*) f(b,a) # f(a,b) implies f(a,a) = f£{(b,b) =0, for all a,b € Vv .

Assume f is not symmetric, i.e. f£(a,b) # f£(b,a) for some a,b ¢ V. Then

f(a,a} = £(b,b) = 0. We wish to prove that f{c,c) = 0, for all c ¢ V. Assume
f(c,c) # 0 for some ¢ ¢ V. From {**) it follows f{a,c) = f(c,a} and f(b,c) =
= f£(c,b). Then by (*) f(a,c) (f£(b,a) - £(a,b)) = 0, hence fla,c} = 0 = f(c,a)

and similarly £(b,c) = 0 = f(c,b). Now we have

ERRS

Al e e e T 5 R
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f(a + ¢,b) = f£la,b) + £(c,b) = £{a,b)

f(b,a + c)

il

f(b;a) .

f(b,a) + f£f(b,c}

By f(a,b) # f(b,a) and (*x) we have f(a+c,a+c¢} = 0, but f(a+c,a+c) =

i = f(a,a) + fla,c) + £(c,a) + £lc,c) = £(c,c) = O # . ]

d) Quadratic forms

A guadratic form is a map Q: V + 1, such that

i) @Q(ax) = aZQ(x), for all a eI, x ¢ V.
ii) £(x,y) := Q(x+y) — Q(x) - Q(y), x,¥y ¢ V defines a bilinear form £ on V.

3.14, £ is symmetric,

3.15. f{x,x) = 20(x) for all x € V.

3.16. If charTF # 2: Q{x) = 4f(x,x), Q is uniguely determined by f. Moreover if f
is any symmetric bilinear form on V then Q{x) = %f(x,x) is a quadratic form
having £ as its associated bilinear form.

3.17. ¥f charF = 2: f(x,x} = 0 for all x ¢ Vv, i.e. f is alternate.

e) Reflexive bilinear form spaces

A pair (V,f), with V a finite dimensional vectorspace over the field ¥, and

f a reflexive bilinear form on V is called a reflexive kilinear form space.

We say that (V,f£) is symplectic if f is alternate, corthogonal if £ is symme-
tric and char F # 2. We assume char F # 2 if £ is symmetric: symmetric non-
alternate bilinear forms in case charF = 2 are explicitly excluded.
An isometry of (v,f} into (V',f'} is an injective linear map T: V + V' such
that £'(T(x),T(y)) = f(x,y), for all x,y ¢ V. The radical of (V,f) is

rad (V,f) := V'; (V,£) is nondegenerate if rad(V,f) = 0, i.e. if £ is nonde-

generate. We take the following point of view: f is fixed; speak of the space
Vv, meaning the reflexive bilinear form space (V,f) and say that Vv is symplec-
tic, alternate, nondegenerate etc. according as (V,f) has the corresponding

property.

3.18, If U £ V then (U,f | U x U) is a reflexive bilinear form space of the same

type as V, and rad U = U n ut.
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If V= Vl ®,..9 Vr and the V, are pairwise orthogonal then V is the orthogo-

nal direct sum of Vl""'vr and we write Vv = V1 Lleoad Vr'
Given reflexive bilinear form spaces (Vi,fi), i=1,...,r we can define a
] 4 0] — r
bilinear form f on the direct sum V = V1 ®...2 V_ by f(x,y)-—zi lfi(xi'yi)'
X =%, oot XY =Y, +...+ Ypr X0¥ € Vi' which is reflexive if the
(vi,fi) are all of the same type. Identifying Vi with a subspace of V as usu-

al we have V = V

1 to..1 Vr.

3.19. sSuppose V = V1 +...+ Vr with Vi orthogonal to Vj for all i # j.

i} rad Vv = rad V1 +...+ rad Vr'
ii)y 1f Vi is nondegenerate for i = 1,...,r then V is nondegenerate and

V=V, L...L V.
i r

3.20. a) The map V/rad V x V/rad V > F defined by (rad V + x,rad V + y) v f(x,y)
is a well defined nondegenerate bilinear form on V/rad V.
b) If V= rad V @ U then U is nondegenerate and V = rad V L U and the natural

isomorphism U + V/rad V, ut rad V + u is an isometry.

3.21. Suppose V = V1 ool Vr' U=10Uu

F. Let Si: Vi -+ Ui be an isometry ! < i £ r., We can define an isometry $§: VU

{ loo.l Ur, U and V spaces over the same field

n

by S{x) = Sl(xl) 4.t Sr(xr) for x X, +...+ X € v, xi € Vi. S is called

1

the orthogonal direct sum of the Si and we write S = S1 l...1 Sr'

3.22, If Vv = V1 l...1 Vr and Si is an isometry of Vi - vi' 1 <1< r then

5 = S1 lo..L Sr is an isometry of V onto V and det S = det 51 ... det Sr' If

T = Tl Leoad Tr' where Ti is an isometry of Vi - Vi then ST = SlTl l.o..1 SrTr'

3.23. If Vv is nondegenerate and U £ V then
a) U'' = U and dim U + dim U’ = dim v.
b) rad U = rad vt = un Ul.
c} U is nondegenerate iff Ul is nondegenerate.

d) U is nondegenerate iff Vv = U L Ul.
3.24. If V = U L W with U,W nondegenerate then W = U™,
{(Note that we did not use char ¥ ¥ 2 so far).

X € V is isotropic if (x,x) = 0 (notation: (x,y) := f(x,y})). U < V is isotro-

pic if U = 0 or if there exists a nonzero vector x € U which is isotropic.

s g e i

iR e,
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U £V is totally isotropic if (x,y) = 0 for all x,y € U, i.e, if rad U = U.

Note: A point P {of PV), il.e. a 1-dim subspace of V,is isotropic iff it is

degenerate 1ff P is spanned by an isotropic vector.

If Vv is orthogeonal and every vector of V is isotropic them V is totally iso-
tropic.
Proof. f is symmetric. Every vector of V is isotropic means f is alternate,

hence skew-symmetric. Therefore f = 0 (charF # 2!'). 0

Let P be a point. P is isotropic iff P ¢ P'L (Pl is the polar hyperplane of

P} . V is symplectic iff every point is isotropic. A line (2-dim subspace) is
hyperbolic if it is nondegenerate and isotropic.

a) The hyperbolic lines are those of the form P + @, where P and Q are nonor-
thogonal isotropic points.

b} The totally isotropic lines are those of the form P + Q, where P and ¢ are
orthogonal isotropic points.

Proof.

a) Suppose L is hyperbolic, then there exists an isotropic point P = <p>c L.
Let R = <r> be a second point on L. R L P would imply P ¢ rad L = 0 so
R AP i.e., {(p,xr) # 0. If V is symplectic we have nothing to prove. Assume
V is orthogonal. Let q := ap + r, a ¢ IF, then (q,q) = 2a(p,r) + (r,x) sco

take a = ~ E%%LE% then {g,q) = 0 and Q := <g> is isotropic and L = P + Q.
r
IfL =P+ Q with P and @ isotropic (p,q) = a # 0 then L has discriminant

det[+g g] = ta? # 0, so L is hyperbeolic.

b) Trivial. O

An ordered pair P,Q of points is hyperbolic if P and Q are isotropic and not
orthogonal. An ordered pair of vectors u,v is hyperbolic if (u,u) = {(v,v} =0
and (u,v} = 1. A line is hyperbolic if it passes through a hyperbolic pair

of points, i.e. iff it is spanned by a hyperbolic pair of vectors.

Structure of reflexive bilinear form spaces

Let V be a symplectic space. Then
a) Vv is an orthogonal direct sum

V=P, L...L P_ 1L
i3

1 lovad Lr

1

where Pl""'Ps are isotropic points and L "’Lr are hyperbolic lines,

17°



3.28.

3.29.

3.30.

b} If Vv is decomposed as in a) then

rad VvV =P, L...L P .
1 s

Proof .

a) Call a subspace U < V indecomposable if it is not an orthogonal direct sum
of proper subspaces. Certainly V is an orthogonal direct sum of indecompo-
sable subspaces. By 3.20 b) rad U= U or rad U = 0 i.e. U is totally iso-
tropic or nondegenerate. If U is totally isotropic then U is a point. If
U is nondegenerate then dim U = 2. Let P be a point of U then there exists
a point Q €U with Q@ L/ P. Now L ;= P + Q is a hyperbolic line, L is nonde-
generate, so U =1L 1 (L’L N U) i.e. U = L. This proves a).

b} According to 3.19

rad V=yrad P, 1...L rad L. =P, L...1 P . ]
1 r 1 3

The codimension of rad V (= 2r) is the rank of V.

Two symplectic spaces over F are isometric iff they have the same dimension

and rank. A nondegenerate symplectic space V has even dimension,

An orthogonal space is an orthogonal direct sum

V=P, L.l P_1Q d...lQ

with Pi isotropic 1 £ i < s, Qi not isotropic 1 < i £ r.
Proof. We only need to determine the indecomposable subspaces. If U is total-
ly isotropic then U is a point. If U is nondegenerate then there exists a non-

isotropic point P in U bij 3.25, So U =P 1 (P1 n U) hence U is a point. ]

Let V be a nondegenerate space, U £ V. Choose a complement W for rad U,

U=rad U 1L'W and a basis ul,...,ur

of rad U. Put P, := <u;>, 1<isr. Then rad U R p
1" 2 : r
1) there exists pairwise orthogonal hy-
perbolic lines LI""'Lr all orthogo-
nal to W such that P, ¢ L., 1 £ i £ r. .
~ i-"i L. L Lr W
Thus U = Ll A L2 L...lL LW is a non- 172

degenerate subspace containing U.

2) If o: U » V' is an isometry of U onto some nondegenerate space V' then o

can be extended to an isometry g: U > V',

oA AR AL s T - e e o L
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Proof.

1) We use induction on r. There is nothing to prove if ¥ =0 (U = U). Assume
) _ 1

r > 0 and put UO = <u1,i..,ur_1> 1L W, sc rad U0 = <u1,...,ur_1> = rad UO.
Since Pr g U0 we have U0 c P; so there exists a point X ¢ Ué with X £ Pr‘

i = Pr + X is a hyperbolic line and Lr c Ué. Since L: is nondegene-

rate we may apply the induction hypothesis to U0 = rad U0 L We L; to get

all orthogonal to W such that Pic.Li

Now L
r

pairwise orthogonal lines Ll""'Lr—l

1 £1i s r-1. Thisg completes the induction.

2) Let Ll""'Lr be the hyperbolic lines constructed in 1) . Then Li==<ui,vi>,

u; v, a hyperbolic pair,1 £ i £ r. Let U' := g(U), ui 1= U(ui), 1<i¢<epyp,
then ui,...,u; is a basis of rad U', U' = rad U' 1 W' w;th W' = g(W). Put
nr = 1.* [ 1 (- ' ¥ ) 1 : .
Ut = L1 laaal Lr 1 W' where Li <ui,vi>, ugevyoa hyperbolic pair, applying

1) to U'. Then E(ui) = ui, E(Vi) = vi, t <i<r, o/W=0/W is an isometry

extending . o

If Vv is a nondegenerate symmetric space and x and y are nonisotropic vectors

such that (x,x) = (y,y) then there exists an isometry 1 of V such that t(x) =y.

Proof, Since V is symmetric we have x+y L x-y. Since not both {(x+y,x+y) =

= 2({x,x) + (x,v}) and (x-y,x-y) = 2((x,x) - (%,¥)) can be 0 one of x+y and

X -y is nonisotropic. Let 2z = x + gy with € = #1 such that z is nonisotropic.

Then V = <z> 1 H, H = <z>1 and x - ey € H. Let u = Tm 2 = ker ¢, ¢{z) = -2.
Then p = 1H 1L - 1<Z> so y is an isometry, and u{z) = ;(x + egy) = =X - gy,

U (X - egy) = X ~ ey hence u{x) = -ey. S0 if ¢ = -1 we can take 1 = y, if

g = +1 we can take 1 = —a,u. 0

{(Witt's theorem). Let V and V' be nondegenerate spaces and let p: V + V' be

an isometry of V onto V' and v: U - V' an isometry of a subspace U of V into

V', then o can be extended to an isometry G: V>V,

Proof. By 3.30 we may assume that U is nondegenerate.

1
Case V is symplectic: V = U 1 Ul, vl = 0' 1 (U')l whare U' := o(U). U and
(U')l are nondegenerate symplectic spaces of the same dimension. Hence by
. J- Ld I} L]
3.28 there exists an isometry 1 of Ul onto (U')", Then o := ¢ L T is an iso-
metry of V extending g. 0
Case V is orthogonal: Induction on dim U. | — - - - - ; v!
a
If dim U = 1 an obvious application of 3.31. | l
Assume dim U > i, then U =P L W, g o 71
W =P n U, P nonisotropic point. Let / \ o, /
U' i= o(U), P' 1= o(P), W' i= o(W), ¥ \ — p
92
9y = 0|P, Oy = UIW. W > W'



By induction we have an extension G,: V -+ V' of u, and EI(P) = P' so 31(Pl)=

to W c Pl, LPL W +—(P‘)l to get an iscmetry 82: Pl - (P')l extending ¢

v

1 1
L
(P')*. As Pl is nondegenerate and W < Pt we may apply induction hypothesis

3" NOW

=P 1p" and ¥ i= 0, 1 32 is an isometry of V onto V' extending . C

Let V be nondegenerate. We may define: index V := max dim of a totally isotro-

pic subspace of V. By 3.23 a) it follows that index Vv < % dim Vv, with equali-

ty if V is symplectic because of 3.27.

3.33. All maximal totally isotropic subspaces of V have the same dimension, so

index V = the dimension of any such subspace.

Proof. Apply Witt's theorem. (]

3.34. Let V be a nondegenerate space of index r. Then

1y v = H2r 1L W, where H, is an orthogonal direct sum of r hyperbeclic lines

2} The geometry of W is independent of the choice of H

2r’
Proof.
1) Let U be a totally isotropic subspace of dim r. By 3.30 there exists HzrgtL
An HZS has a totally isotropic subspace of dim s, so 2r is the max dimen-

2)

2r
and W is nonisotropic.

1 .
2r1w, W o= H2r and if O#x ¢ W

r,x> contains a totally isotropic subspace of

sion of such a subspace. Moreover, V = H
is isotropic then <H

dim r + 1 # .

2

Follows from Witt's theorem: If H! is a second such sum of hyperbolic

2r
lines, then certainly there is an isometry o of H2r onto Hér. The o extends
~ ~ L 1
t i try ¢ of d o(H = ! .
o an isometry ¢ of V an ( 2r) (H) ) 0
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The symplectic group

Let (V,f) be a nondegenerate reflexive bilinear form space. The group of all |

isometries of (V,f)} is denoted by Sp{Vv) if (V,f) is symplectic and by 0O{(V,f}
if (V,f) is orthogonal. Sp(V) is called the symplectic group, 0(V,f) the or-

thogonal group. Let Vl' ...,vn be a basis of Vv, and let E = (f(vi,vj)) be the
corresponding matrix of £. Let T ¢ GL(V) and A ¢ GL(n,J) the matrix of T with
respect to this basis. Then T is an isometry iff aEAt = E,

We define Sp(ndF) := {A ¢ GL(n/F) | AEAt = E} if {v,f) is of symplectic type,
0(nF,£) := {A ¢ GL(nF) | AEAT = E} if (V,f) is of orthogonal type. Clearly

Sp(v) ~ Sp(n ) and 0(V,f) ~ O(ng,£f).
Isometries of (V,f) have determinant +1.

Assume (V,f) is symplectic

By 3.27 V has even dimension n = 2r and a symplectic basis ul,u_l,uz,u_z,

P TP such that (u,,u
r rl’ _rl . ( 1!

_1) =, .= (ur,u_r) =1, (ui,uj) =0 4if i + j # 0.

Sp(V) acts faithfully and regularly on the ordered symplectic bases.

Assume ¥ =IE‘q, We can determine ]Sp(v)[ by counting the ordered symplectic

bases. Define L := <u1,u_ >, then L is an hyperbelic line and Ll==<u2,u_2,..

1
ceesu pu_> is a nondegenerate symplectic space of dimension 2(r-1). Let
p(r} denote the number of ordered symplectic bases, then g{r) = {(# hyperbo-

lic pairs of vectors). ¢(r- 1). Suppose u,v is a hyperbolic pair of vectors,

then u,w is a hyperbolic pair iff (u,v-w) =0, i.e. 1ff v=-w ¢ <u>l. Hence
. . 2r 2r-1 2r 2r-1
the number of hyperbolic pairs equals (g -1)g ’ go plr) =(q -1lgq
x
- p(r-1), and with ¢(1) = (g°- 1)q we £ind o(r) = q* T (g°"-1).
n 2 i=1
(P n/2 o
|sp(n,GF(@)) | = q LI (gt-1.
i=1
i1f n = 2 then [Sp(2,GF(q))] = alg®-1) = |sL(2,6F(q))|. In fact:

Sp(2F} ~ SL{2F) for any field IF.

0 1
Proof., Choose a hyperbolic pair of vectors as a basis of V. Then E = (_1 0)
. _,a b t 0 ad-bc, _ . o e —

and for any matrix A = (, ) we have AEA = (" . ) = E iff ad-bc=1

i.e. iff A ¢ SL(20F). O
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We consider the action of Sp(V) on the points of PV. We have an exact sequence

1> 2Zp(V) > Sp(V) » PSp(Vv) - 1,

where PSp(V} := Sp(v)pOlnts

+ Zp{V) = kernel of this action = Z(V) n Sp(v). A
scalar transformation AI is in Sp(V) iff AT E AI = E, i.e. iff A = +1. Hence
Zp(v) = {1}, IfF = GF{(g) then

2 2

&2, :
I (C.{ _1)r d = (ZrQ"l)' :

1 1
|Psp(n,GF(q)) | = =|Sp(n,GF(q)) | = = q
4 d ,
i=1
We know already that isometries have determinant +1.or -1. We shall show that

symplectic isometries have determinant +1. First of all we determine the trans-

formations Tw b which are in Sp{(V). Assume ¢ # 0, so 1 := Tm P # 1 and let
r L~ .
H := ker ¢, P := <p> then ;
1(Q} = Q, for all Q c H, hence

T(Ql) = QL, for all Q c H, hence

P Ql, for all @ H, 0 # Hl, hence

in
In

0 c Pl, for all Q < H, Q # Hl, hence i

H\H'L c Pt so H = p* . _ :

This shows that T € XP ple Conversely if P = <p> is any point and 1#71¢ XP pl
r r
then t(x) = x + a(p,x)p for some a eZF*, and 1t is an isometry for (t(x),t(y)) =

= {x,y} + al(p,x}(p,y) + a(x,p) (p,y) + az(p.x)(p.y)(p,p) = {x,y).

XP pl < Sp(V) for all points P.

If T ¢ Sp(v) then T(PY) = T(®) ' so T(xp,pl) = *pp), TRy 4

XP,Pl < SP(V)P,PL = Sp(V)P = Sp(V)Pl.

The elements of X pl are called symplectic transvections. We know X

- Pl::ﬁF.+)

P,
is abelian.

T ¢ Sp(V)> since Sp(V) is transitive on the points of PV.
Proof. Let G(V) be the subgroup of Sp(V) generated by symplectic transvections.

We show that G(V) is transitive on the ordered symplectic bases.
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1} G{V) is transitive on the vectors # 0. Let u,v ¢ V\{0}.
Case u £ v: P := <u + v» is a point on L = <u,v> and P~L N L =P. We know

that XP pl Woves u to v.

Case u L v: There exists a vector w such that w / u and w { v, because

cur Ty <yt # V. Move 1 to w and w to v.

2) G(V) is transitive on the hyperbolic pairs of vectors. Let u,v; u'v' be .

hyperbolic pairs of wvectors. By 1) we may assume u

u'. We must show the

existance of T ¢ G(V}) such that T(u) = u, T(v) = v'. Let P := <>,
Q := <v>, Q' = <v'>,
Case P,D,Q' collinear: L :=P + Q + Q' is a line, Then PJ~ nL="P and

XP pl moves v to v' and fixes u.
r

Case P,0,Q' not collinear: Let R := (Q + Q') n Pl. Suppose Q & Rl then

R,
we take a point Q" on P + Q', Q" # P,Q'.

Let R' := (Q + O") n P, From Q ¢ R= it
follows that R ¢ @ . Then (P+R) no' =
as P ¢ Ql. Hence R' ¢ Ql as R' c P + R,
# R. Thus XR',(R'
Q" can be moved to Q'

yL moves Q to Q" and

Xp gt WOves v to v' and fixes u. If Q ¢ R

3) G(V) is transitive on ordered symplectic bases, Let Uyrl_jreeerl U and

-r
vl,v_l,...,vr,v_r be two sympleitic bases. We can assume W = ve,ou =V
by 2). Then, if L = <u1,u_1>, L™ = <u2,u_2,...,ur —r> = <v2,v_2,...,vr,v_r

By induction there exists a g ¢ GGLL) such that o(uj) = Ve i=42%2,...,%r,

Put T = 1 1 ¢ then T maps the one basis to the other. Clearly T € G(V) for

L

if A is a symplectic transvection of Ll then 1L

vection of V.

-

4.8. T € Sp(V) implies det T = 1.

4.9, Center of Sp(Vv) = {+1}.
Proof. Let T be in the center of Sp(V) then
Therefore T{(P) = P for all P, i.e. T e Zp(V)

4.10. Sp(V)
} PSp(V), simple?
{#1} = center Sp(V)

1

T(XP'PL)
= {+1}.

1l X is a symplectic trans-

C

= xP pl for all points P.
r

O
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In order to prove simplicity of PSp(V} we want to apply Iwasawa's lemma to

the action of Sp(V) on the points of PV. So we still have to prove

a) Sp(V) acts primitively on the points.
b) Sp(V) is perfect.

Because Sp(2JF) ~ SL{2JF) there will be exceptions to b) and we can restrict
our investigations ton =2 4. Nown = 4, hF| = 2 is the first case and

[spa, 2] = 2%2*-n2*-1) =6t = |z [. 1n fact

. Sp(4,2) ~ PSp(4,2) ~ 26 so PSp(4,2) is not simple.

This is an immediate corollary of:

b <

P Sp(2n,2).
Proof. Let X be a set of 2n+ 2 peints. The partitions of X into two subsets
with an even number of points form a vectorspace of dimension 2n over GF(2)

if we define addition by
{a,x\a} + {B,x\B} := {a + B, x\(Aa + B)}, A,Bc x, |a|] = |B] = 0(»).

(A + B = symmetric difference of A and B = (A U B)\(A n B)).

We can define a nondegenerate symplectic form on this vectorspace by
({a,x\n}, {B,x\B}) := |a n B| mod 2, A,B ¢ X, |a] = |B| = 0¢2).

It is clear that ZZn leaves this form invariant, hence 22 < 8p(2n,2). []

+2 n+2

There is alsg a nice proof of 4.11 using the isomorphism PSL(4,2) ~ A

-
Construct a polarity of PG(3,2) using A6. AG commutes with this polarity .
A6 < PSp{4,2) so 26 ~ PSp(4,2). _

Let X denote the set of points of PV, 1 = 1X the diagonal subset of X2.

o = {®Q £ 1 [P 1Q} a,:=1{(@0 |PLQ

Clearly X2 =1wu a4, U a, moreover by 4.2 we have

2
1, oy and a, are the orbits for the componentwise action of Sp(V) on x2 i.e,

x%/sp(V) = (1,a,,0,).

Note. 4.13 means that Sp(V) has rank 3 in its action on X i.e. PSp(V) is a
rank 3 permutation group on X (if G tra X than G is said to be of rank r if

G has r orbits on X2).

i e AT 7 L

I
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Let P ¢ X, define for i ¢ {1,2} Pa, := {0 | (P,Q) € ai} so Pai is the set of

vertices in the graph (x,ai) adjacent to P.

4.14. P, Pul and Paz are orbits for Sp(V)P acting on X i.e. X/Sp(V)P=={{P},Pa1,Pu2}.
Note. (x,ul), (X,uz) is a pair of complementary strongly regular graphs or

equivalently {X,{1,0,,2,}) is an asscciation scheme with 2 treatments.
1772

4,15, Sp(V) pri X.
Proof. Let B be an imprimitive block, |B| > 1. We have to prove that B = X.

Let P ¢ B, if B n Pai # @ then Pg, & B. Moreover Qu, < B for every Q € B since

i
Sp(v)_ tra B.

Case g n_Pa, # ¢: Let R be any point not in {P} v Pa, = pl, take Qe (R+ p)*
then R ¢ Qal and Q € Pa1 < B, hence R ¢ Qal c Bi.e. B =X.

Case B n Pa, # #: Let R be any point not in {P} v Pa,. Take Q € x\(P'L u R
then Q ¢ Pa, and R ¢ Qu, € B, * B = X. g

Note, The essential thing in the above proof is that (X,al) and (x,az) are
shown to be connected. The general statement is: Suppose G tra X then G pri X

iff all graphs {X,0) are connected, o € xz/G, o # 1.

4.16. sp{n,F}, n = 2r is perfect unless (n, llFl) = (2,2), (2,3), (4,2).
Proof. Suppose Sp(nF) is perfect for some n 2 2 and let 1 ¢ xP,Pl be a sym-
plectic transvection in Sp{n+ 2J). Let I, be a hyperbolic line such that
P c " thenv =L + L' and 1 = lL 1l o where 0 = 1 L' is a symplectic trans-
vection in Sp(Ll). Then ¢ is a product of commutators in Sp(Ll). If A,ue Sp(Ll)
then 1L L (A, = (1L 1 A,lL 1 u), hence T is a product of commutators in
Sp(n+2,F} . sp(n+2F) is perfect. So

(*) I£ 8P (n,F) is perfect so is Sp(mF) for all m = n .
By 4.4 and 2.24 we have:
(%) If hﬂ > 3 then Sp{(n,F) is perfect for all n = 2 .

It remains to show that Sp{4,3) and Sp(6,2) are perfect. In each case it suf-
fices to show the existence of a single transvections # 1 in the commutator
subgroup (if 1 # 1 € Sp(V)"' is a symplectic transvection then T ¢ XP pl for

r
some P. Since XP,Pi ~ {F,+) has o;der 2 or 3, T generates XP,P* so XP,Pi:ESP(V)"
<

T
Therefore XT(P),T(P)' = XP,Pl <

(Sp{V)') = Sp(V)' for all T ¢ Sp(V)). For
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this use the following. Let ul,u_l,uz,u_z,...,ur,u_r be a symplectic bhasis

of V. Rearrange: ul,...,ur,u ey then the matrix of our form looks like

-1
0 1
E =
-1 0
Let M := <u1,...,ur>, N := <u_1,...,u_r>.

M and T{(N) = N, then T has matrix [g g]and we see
0

that T ¢ Sp(V) iff Act = I. Hence the matrices [g A_t], A ¢ GL(rJF) re-

1) If T ¢ SL(V), T(M)

present precisely those elements of Sp(V) which fix M and N.

2) If 8 ¢ SL(V) and S|M = IM then S has matrix {3 2] and 8 ¢ Sp(V) iff B=B
and C = I. Hence the matrices [; ?] with B = Bt € E}ur represent precise-
ly the elements of Sp{V) fixing every vector of M.

A Q I B _ .t
IfT-[O A_t],s—[o I],AeGL(r,IF),B—-B € ¥ _ . then
- -1 = . t
A 0 I B||A 0 I =-B I ABA -~ B
(T,S) = _ -
o a %o 1Jlo aYo 1 0 1

To complete the proof of 4.16 we make suitable choices for A and B such

that (T,S5) represents a transvection. If n = 4, IF = GF(3) take A = [i é],
B = [_? _é] then ABAt - B = [é g]. If n=6,F = GF(2), take
1 1 0 1 o0 1 1 0o 0
a=10 0 1{,B=10 1t 1| thenama®-83=1{0 o0 of. QO
1 0 1 1 1 0 0 0
4.17. PSp(nJF) is simple provided that (n, [F|) # (2,2), (2,3), (4,2).
Proof. Apply Iwasawa's lemma. {1
Remark. Suppose V is a nondegenerate symplectic space of dim n = 2r 2 4,

X := points of PV, L = the totally isotropic lines. Then

1) 2 points lie on at most one line of L.
2) Given a line L ¢ £ and a point P not on L either
a) exactly one peint of L is joined by a line to P or
b) every peoint of L is joined by a line to P.
(Indeed, if P ¢ L' then every point of L is collinear with P, if p ¢ L
then P* nL=29and Q is the unique point of L which is collinear with P).
3) Every line of £ has at least 3 points and dually through every point

pass at least 3 lines,

t -

i
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A system of points and lines satisfying 1), 2) and 3) is called a polar space.
The polar spaces {with a mild finiteness condition} have been classified in
the Buekenhcout-5hult theorem. If b) does not occur the polar space is called
a generalized quadrangle. This happens for example with (X,L) whenn =4 because -

then L = LJ'.
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The unitary group

Let IF be a field, ¢ an automorphism of F. We often write 6(a) = a, a € F. Let
V be a vectorspace over ¥, A map £f: V X V » IF is O-sesquilinear if f{ax,y) =

= Ef(x,y), fix,ay) = af(x,y), fi(x+y,z) = £(x,2) + f(y,2}, fix,y+2z) = £f(x,y) +
+ £(x,z), for all ae¢TF, x,y,2 € V.

We can define a new vectorspace structure on (V,+) as follows: a.x :=0_1(a)x,
ae¢lF, x e V. We write cv to denote (V,+) with this new vectorspace structure.
The g-sesquilinear forms on V are precisely the pairings of Crv with v. In this
way the theory of pairings can be applied to sesquilinear forms.

Let H £ V (notice that H is also a subspace of GV) then

H i={xev]| (Hx =0}; "H:={xev| (xum =0} .

: e+ 1 , .
The o-sesquilinear form f is nondegenerate if "V = 0 (or VvV = 0), which is

eguivalent to Det(f(xi,xj)) # 0, where XyreoarX is a basis of V.

Lo, . .
If the U-sesquilinear form f is nondegenerate then HH H is an inclusion re-
. , , 1 , L
versing permutation of the subspaces of V with inverse Hv¥ "H and dim H =
= ¢codim H. Thus f induces a correlation of PV. (Every correlation is induced

in this way provided dim v 2 3).

We state some facts about fields:
Let v be an automorphism of the fileld IF, 02 =1, 0 #£ 1 and¥_. the fixed field

0

of ¢, i.e. F, = {aer | a=al. ThenT: F, = 2 and <0> is the Galois group

of lF/fIFO {i.e. <0> contains all the automorphisms of FF that leave I, fixed).

0
We define the maps:

- * * —_
trace: ¥ ->IIFO, air a+ a, and norm: FF +]FO, ab aa. We have

i) 5+a=0iffa=c—5forsomece]F.

ii) aa = 1 iff a = d/d for some d ¢ IF.

Indeed, take u such that u + u # 0 and put ¢ = (u+1_1)_1aﬁ in case i), and take
u such that au + u # 0 and put 4 = au + U in case ii). From i) and ii) it fol-
lows that trace and norm are surjective if ]]F| < =_, A O-sesquilinear form f
on V is

reflexive if f(x,y) = 0 implies f{y,x}) = 0, for all x,y € V.

g-hermitian if 02 =1, ¢ # 1 and f(x,y) = Hf,x_), for all x,y € V.

O-skew hermitian if 02 =1, 0 #1 and f(x,y) = —fw, for all x,y € Vv,

Hermitian and skew hermitian forms are reflexive. If f is reflexive we define
L L
rad £ := v (= "V}. The form f is nondegenerate iff rad f = 0. The nondegenera-

te reflexive JO-sesquilinear forms induce polarities of PV.
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5.2. Let f be a nondegenerate reflexive o-sesquilinear form on V and assume dim V= 2.

Then either

al} ¢ =1 and f is symmetric or alternate, or

b) 02 =1, 0 # 1 and af is o-hermitian for some a G:F*.

Proof. LS S Gblf(y,x) is a linear functiconal for each x ¢ V, wx: vy e £(x,vy)
is a linear functional for each x ¢ V. Clearly ¢x(y) = 0 iff wx(y) = 0. This
implies that for each x ¢ V there exists Ax ¢ I such that U_lf(y,x) = kxf(xfy)

-1
for all y € V. So ¢ "f(z,x+y) = Ax+yf(x-+y,z) = Axf(x,z) + Ayf(y,z),

o f()\x+y(x+y) - ?\xx - )\yy,z) = 0 for all z ¢ V.
kx+y(x-+y) - Axx - lyy = 0.

If x and y are independent we have Ax+y = Ax = Ay. If x and y are dependent,
take z independent of x and y (we took dim V 2= 2) then Ax = Az = Ay. This

shows that Ax does not depend on x. Write A = Ax' We have

-1
aldF Vx,yEV [£(x,y) = o "fly,x)] .

-1 -1 -2 -1
f({x,y) = Ac " (Ao "f{x,y)) = xc "£(x,y)o " (A} .
-1 -2 -1 -2
Take f(x,y) = 1. Then Acd "~ (A) = 1, hence £(x,y} = Ao "f{x,y}A ~, s0 © =1
and we have

a) if o = 1 then Az =1, 2 = #1,

b) if o # 1 then f(x,y) = Af(y,x). Take u such that u/u = A, then uf{x,y)

= uf(y'x) . D

*
Suppose £ is hermitian, a ¢ I then

i) a=a, i.e. a ¢ ¥, implies af is hermitian,

0
-a, i.e, a is skew, implies af is skew hermitian.

ii) a
Certainly skew elements exist, so w.l.oc.g. we may assume that f is either her-

mitian or skew hermitian. A unitary space (V,f) consists of a vectorspace V

together with a hermitian or skew hermitian ¢-sesquilinear form for V. As be-
fore we define isotropic, totally isotropic, nonisotropic, isometry etc.;

rad(Vv,f) = rad f = rad V. The unitary group U(V,£) = U(V) = U{f) := the group

of all isometries of (V,f);U+(V,f)( = SU(V,f)) = the determinant 1 subgroup
of U(v,f).

Let (V,f) be a nondegenerate unitary space, assume f is skew hermitian. A line
L in V is hyperbolic if it is nondegenerate and isotropic. Let P = <p> be an

isotropic point of I and R = <r> be any other point of L. We want an isotropic
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point Q # P on L. For Q = <ap + r> we have (ap + r, ap + r) = a(p,r) +

+ a{r,p) + (r,r). Now (r,r) = —T;T;T so {r,r) = ¢ - ¢ for some c ¢ F. Put
{(p/xr) = b (b # 0 since otherwise P c rad L) then (ap + r, ap + r) =
=ab-ab+c~-c=ab+c- (ab+c) =0 if we let a = -o/B.

An ordered pair p,q of vectors is hyperbolic if p and g are isotropic and
(p,q) = 1. An ordered pair P,Q of points is hyperbolic if P and Q are iso-
tropicandpr / Q.

For a line L the following are eguivalent

a) L is hyperbolic.
b} L = <p,qg>, where p,q is a hyperbolic pair of vectors.

c) L =P + Q, where P,Q is a hyperbolic pair of points.

Let P + Q, P = <p>, 0 = <g> be a hyperbolic line, p and q a hyperbolic pair
of vectors then p + ag, a € ¥ is isotropic iff a = a, i.e. a E:FO. The iso-

tropic points # Q are in a 1-1 correspondence with the field elements onFO,

e.g. if hFOI = g then hF| = q2 and q+ 1 of the q2-+1 points on a hyperbolic
line are isotropic. Put L0 = <P/ =]F0p Gimbq then £ | Ly X L0 is a nonde-~
gencrate alternate form on LO' i.e. LO is a symplectic hyperbolic line, the

points of L0 are precisely the isotropic points of L. The matrix of £ | L ¥ L

_? é) and A ¢ SL(2JF) represents an element of U+(L) iff AJEt =J

. _ ,a
iff A € SL(2JF0). If A = (c

is J 1= (
b -t . - -
d) and ad - be = 1 then AJA™ =g iff ab = ba,

cd =dc, ad -bc =1, i.e. iff a=3a, b=Db, c=¢, d = 4.

+
If L is a hyperbolic line then U (L) & SL(2JF0) (~ Sp(ZJFO)).
Let V be a unitary space.

An indecomposable subspace # 0 is a point.

Proof. Let H be an indecomposable subspace of V # 0.

1) If H is degenerate then H is an isotropic point.

2) If H is nondegenerate then H contains a nonisotropic point. Indeed, suppose
I is an isotropic point of H. Since P ¢ rad H there exists a point Q c H,
Q@ L P. The line L = P + Q is nondegenerate. Thus L is a hyperbolic line.
Hence L contains a nonisotropic point. If R is a nonisotropic point of H
then H = R i (Rl nH &~ H = R. 0O

A unitary space V is an orthogonal direct sum of points, V=P, L...1 Ps L

1
Q, L...1 . with P,,...,P_ isotropic, Q,,...,Q, nonisotropic. If V is so de-
1 t 1 s 1 t

composed then rad v = P1 l.o..1 Ps'
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If F is finite and dim V = 2 then V is isotropic.

Proof. It suffices to prove that an orthogonal direct sum L = P 1 Q of non-
isotropic points P and Q is isotropic. We may assume that £ is hermitian. Lét ‘
P =<p>, Q =<, a := (p,p) then a = a so a € Fy. The norm is onto, so for
suitable o ¢ IF: (ap,ap) = aca = 1, i.e. we may assume {(p,p) = (q,q) = 1. Then

(p +cg, p+cg) =1 + cc and we may take c¢ ¢ IF such that cc = -1. 0

If |F| < = and V nondegenerate of dim n, then

L, L...L L if n = 2s
1 ]

LJ....J.LSJ.P if n=2s + 1

1

where the Li's are hyperbolic lines and P is a nonisotropic point.

If bFI =q2 < = and V nondegenerate of dim n then gp(n) = # of isotropic (non-

zero) vectors = (qn_ (-1)n) (qn_1 - (vl)n_l) and # of hyperbolic pairs of vec-
2n-3

tors = g ¢(n) .

Proof. Let P and Q be isotropic points. suchthat P + Q is non-degenerate.

% isotropic points = qa(n)/(q2 - 1) = # isotropic pointson pt o+ # isotropic

‘ ‘ 2
points of £ P'L. pt n Q" = (P+ Q)* is nondegenerate, Each of the ¢{n -2)/(q -1) iso-

tropic points Ron 2l QJ' yields a totally isotropic line’
P + R. Hence, # isotropic points on P =Lén_2) q2+ 1

2(n-1) _ . PR S
Each of the g points 8 off P~ yields a hyperbelic

line P + S containing q isotropic points. Hence,# iso-

tropic points off pt = q.qZ(n-l)/qZ = q2n_3. We get:

2 2n-1 2n-3
o) = a2pn=-2) +a™ 1+ ¢ 4 ? -1, 9(0) =e(1) =0.
This proves the required identities. 0

Note that q)(2)/(q2— 1) =q + 1, tp(3)/(q2- 1) = q3 + 1.

) n
5 .
ot} =a? 1 (¢ - -nh.
i=1
Proof. Count the number of unitary bases using 5.9 and ]U(l,q)[ =q +1
2
|u(2,@) | = alg” -1} (g+ ). 0

The determinant map is a map from U(V) ontc U, := {k ¢ IF AN = 1}. We have

1
the exact sequence

1> utw > o - u 1.

The isometrles in U+(V) , l.e. with det = 1, are called rotations.
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1f |F| = q2 < o then |U1| =q + 1, so !U+(V)| = g1 u(v)
M n .
wtw | =q % 1 (&t - nh .
i=2

Look at the action of U(V) on the points of PV. We have the exact sequences
1> 2(V) nUV) »U(V) -PU(V) >~ 1,

1+ 2(V) n U+(V) > U+(V) -+ PU+(V) -1,

where pu(v) = 0(v)P®, put(v) = LT WP, z(v) nuw = (A1 | AX = 1} and

z2(v) n U (V) = (a1 | A% =1, A" = 1)}. We have |Z2(V) n UMW) | =q + 1,
|Z(V) n U+(V)| = {n,q+ 1), hence
(M n .
lputn, | =q 2 1 (q - DY = [utma .
132
. ) n . .
vt | =a g% 1 @ - b, as= marn.

Result 3.30 holds with the same proof.

Witt's theorem (result 3.32) still holds but requires a different proof. We
shall give a proof at the end of this chapter.

As a conseguence we have

U+(V) is transitive on vectors of a given length # 0.

Suppose V is nondegenerate, The index v of V is the maximal dimension of a to-
tally isotropic subspace of V. So v 2 1 iff V is isotropic. Witt's theorem im-
plies that any two maximal isotropic subspaces have the same dimension, so v

is the dimension of any maximal totally isotropic subspace.

Unitary transvections

Let V be a nondegenerate unitary space. Assume f is skew-hermitian. Which

transformations of the form T¢ : xb x + 9{x)p are in U(V)? Suppose
r
T = T$ p ¢ U(V) then for all x,y ¢ V:

I

(x,y) (T(x) ,T(¥)) = (x + ¢o({xX)p, ¥ + 9(y)p) =

(x,v) + o(y) (x,p) + o(x) (p,y)} + ¢(X)o(y){p,pP} -

Wb R IR D L

ST i n
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Hence r
{x) o (y) (x,p) + o(x) (p,y) + o(x}o(v)(p/p) =0, ¥Yx,y e V .

Put H := ker ¢ and fix y ¢ V\H. By (*} o¢(y)(x,p) = O for all x ¢ H. So,
(x,p) = 0 for all x € H, Therefore H = Pl, P = <p>, and ¢(x) = a(p,x) for
some a ¢ ¥ . Substitution of this result in (*)'yields:

a(p,y) (x,p) + a(p,x) (p,y) + aa(p,x) (p,¥)(p,p) = 0, Vx,y ¢ V .

Take X,y ¢ V\H and divide by (p,y) (p,x) to obtain a ~ a - aa(p,p} = 0. This

condition is necessary and sufficient for Tm te be in U(V). Clearly such a
r

transformation is a transvection if and only if (p,p) = O. |

The transvections of the form T(x) = x + a(p,x)p, (p)p) = 0, a € Eb are the

unitary transvections. Clearly all unitary transvections are in U+(V).

Let P = <p> be an isotropic point, Yp = {1 [ T(x) = x + a(p,x)p, aezrb} is

an Abelian group ~ GFO,+): Suppose L is a hyperbolic line through P, if L0
is the subline of isotropic points on L then YP|L = XPPL(LOJ o~ GFO,+). Also
+
<3
YP ayu (V)P. .
Define, T(V} := the subgroup of U (V) generated by the unitary transvections.

We want U+(v) T(V). To examine this define g « U+(V) tobe ahyperbolic rota-

tion if there exists a hyperbolic line I such that o fixes every vector of Ll,

+
g = lLl LT, TeU(L) ~ SL(Z,LO).

(Dieudonné) . IfTFO # GFP{(2), v2 1, n=2 2, then U+(V) is generated by the hy-
perbolic rotations.

Proof. Induction on n. For n = 2, O.K, Let u ¢ U+(V), X a nonisotropic vector
such that <x>l is isotropic. We shall show that there exist a product of hy-
perbolic rotations v such that vu(x) = x. Then the result follows by induc-

tion applied to wu | <x>t,

If u(x) = x there is nothing to prove, so assume u(x) # x. We reduce to the
case in which u(x) - x is nonisotropic. Suppose u(x) - x # 0 is isotropic,
put (u{x),x) = a then 0 = (u{x) - x, u(x} - %} = (u(x),u(x)) - {a(x),x) -

+ (x,ulx)) + (%x,%) 2(x,x) -~ o - a (f is hermitian).

(*) 2(x,x) = a + a
Assume o £ 0. If X ¢ u, (i.e. A% = 1) then
(u{x) - Ax, u(x) — Ax) = 2{x,X) - Aa - Ac = a + a — AQ — AQ .

If u(x) - Ax isotropic for all A ¢ U1 then o + o — Aa - Aa = 0, VA € Ul'
%% - a=0,VreU, acontradiction since lu, [ = 3.

Hence {a + a)i — A 1
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So u(x) - Ax is nonisotropic for some X ¢ Ul'
Since (Ax,Ax) = (x,%) = {u(x),u{x)) it follows from 5.14 that there exists
g e U+(V) s.t 9(AX) = u(x). Now G(Ax}) - Ax = u({x) - Ax is nonisotropic, so
{assuming the result for u(x) - X nonisotropic) there exist a product of hy-

perbolic rotations v s.t.vlc(lx) = Ax, i.e. v.u(x) = Ax. Similarly there

1 1
exists T € U+(V) s.t.7(%x) = Ax. Also T(X) - X = AX - X = (A -1)x is nonisotropic
for A ¥ 1. Hence there exists a product of hyperbolic rotations w such that
wt{x) = %, i.e. w(Ax) = x. Therefore, with v := LSRR product of hyperbolic

rotations, we have,

vu(x) = wvlu(x)= wiix) = x .
Assume o = 0. Now 2(x,x) = 0 by (*) so char ¥ = 2. There exist X,y ¢ Eﬁ such
that AX + up = 1 (sinceZFO # GF(2) we can take 0 ¢ F  s.t 0 + 3 = 0 and
g+ 1#0, Put A = ; U o= ——&——4. Put ¥y = Ax + pu(x) then (y,y) = (x,x) =

1 +0 1 +aqa
= (u(x}),u(x)) and (y,x) # 0, (y,u(x)) # 0. Applying the case o # 0 twice

yields: 3v,w products of hyperbolic rotations such that v(u(x)) = y and

w(y) = x. Hence wviu(x)) = w(y) = x.

We are reduced to the case in which u(x}) - x is nonisotropic.

Assume u(x) - x is nonisotropic, Put P = <u(x) - x> and let L be a hyperbolic
line through P. We have V = L L Ll, XxX=y + 2z, u{x) = y' + z' with y,y"' ¢ L
and z,z' ¢ Ll. Since z - 2' = x - ux) +y' -~y ¢ ! nL=o0 it follows that

z = z'. Therefore (x,x) = (u(x),u(x)) implies (y,y) = (y',¥").

if y 1s nonisotropic then there exists g ¢ U+(L) such that o(y') = y. Put
v=0a 1 1LL then v is a hyperbolic rotation and vu{x) = v(y' + z') =v(y') +2'=
=y + z = x. We are done in this case. Assume therefore that y is isotropic.

The proof consists in showing that we may choose a new hyperbeolic line L

1

through P such that the projection Yy 1,

cf x on L1 is nonisotropic.
1
We have V=P L P, x=a + b, a € P,

b ¢ PT. Put ¢ = y - a e L. < < <Ab + Ac¥

1) a # 0 50 P = <a>. For suppose a = 0 then x « PL, 80 0 = (xX,u(x) - x) =
= (x,ulx)) - (x,x) = (x,u({x)) - {(u(x),u(x)) = (x - u(x),u(x)). Hence
(ulx) - %x,u{x) - x) = 0, which is a contradiction.

2) (a,b) = (a,c) = 0 (hence <a> # <c>), Clearly a ¢ P, b € pt implies (a,b) =0.
From P ¢ L it followg z ¢ LT [ Pl, so (a,x) = {a,y) + (a,2z) = (a,y). Also

{a,x) = (a,a) + (a,b) = (a,a). Thus (a,y-a) = 0.
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3) (b,e) = (c,0) = -(a,a) €F,.
Since y =a +ce¢ L, anda ¢ P £ L it followsthatc ¢ L, Fromx=a+b=y+2z =
=a+c+ zwe see that b = ¢ + z. Hence {(b,c) = (c,c) + {(z,c} = (c,c).
Also (c,c) = (y-a, y-a) = —{y,a) - (a,y) + (a,a) = —(a,a).

It will suffice to show that there exist A\ and u such that L, = <a,Ab + uc>

1

is a hyperbelic line and the projection Y, of x on L, is nonisotropic. Put

(b,b) = o ¢ TF

1
*
0 and ~-(a,a) =B EIE-"0 then
(a+ib+ypc, a+ib+pc) = =g+ Aka + (Ap+uA)B + pupf ,
50 a + Ab + pc is isotropic if and only if

(%) Ao + (Au + PA)R + puB = B .

Since (a,a + Ab + uc) = (a,a) = - # 0 it follows that L, is a hyperbolic line.

1

Write x = Yy + (x - yl) with vy, € L, and x - Yy € Ll, so (x - yl,yl) = 0. We

1
show that A and p exist such that (*)}) holds and such that (x - 4,d) # 0 for

every isotropic point <d> on L This guarantees that Yy is nonisotropic.

Assume (*) holds, i.e. a + Ab -]I.- yc is isotropic, then d = a + p(Ab + pg) is
isotropic iff pp = 1. Now (x - d,d) = (x,d) = (a +Db, a + p(Ab + uc)). =

= -B + p(da + uB), so (x - d,d) = 0 implies B = p{ia + uB) hence p (ra +pp) =8,
32 = {Aa + pB) (Ro + uB) and so, using (%), we obtain (1 - pp){a - B) = O.
Suppose a = B, i.e. (b,b} = ~-(a,a), then {x,x) = (a + b,a + b) = 0, which is
a contradiction. Therefore,if there exists an isotropic point <d> on L1 such
that (x - 4,d4) = 0 then uu = 1.

We are now reduced to showing that there exist A,y ¢ FF satisfying {(#) and such
that pp # 1.

We show: There exist A,y ¢ IF satisfying {(x) and wp A1, A A0, A +u#O.

If we put v := (B - o)/B and use the transformation
A+ _ 1
E - u ¢y N = A

we see that this is equivalent to:
There exist £,n ¢ F such that EE - nmhn =v, E + E#1 +v, £ #0, n # 0. Since

the trace: ¥ +]FO is onto and:IF0 # GF(2) there exists 51 €T, £ # 0,y such

thatgl+El=1+y. Put n :=51—-Ythenn#0andgl_\‘,:1—nﬁ=Y.
There exists £ ¢ ¥ such that £E 5151 but £, + El # £ + E. Hence EE - nn =

=gf -nmn=y, E+EAE +E =14y, §#0,n#0. [

il

+
If hFO] #2, vz 1, nz 2 then U (V) = T(V).
Proof. Because SL(2,1FO) iz generated by transvections it follows from 5.4

that T(V) contains all hyperbolic rotations. Hence T(V) = U+(V) by 5.15. 0
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If v=1, h2z 2 then T{(V) = U+(V) unless:FO = GF(2) and n = 3,

In order to prove 5.17 we take, until further notice, IF. = GF(2), F =T(8§),

0
82 + 6 +1=20. Let L be a hyperbolic line with points <p>, <gq>, <p + g>,
<p + 0q>, <p + 0°q> such that (p,p) = (q,@) = (p +q, p + @ =0, (p,a) =

2
={q,p) =1, {(p+0g, p+ 08 q) =0.

il

a) T(L) is 2-transitive on the 3 isotropic points of L (T(L) U+(L) =
= BL{Z2 .
L{ JFO))

b) T(L) is transitive on the 6 nonisotropic vectors of L.

Proof.
a) We know this already. 5
o 1.1 _ 6 1 1, .1 _ .8 1 0 .1 1
b) (§ () = (D (o D) = Cghe (f g = . D

Consider the case n = 3. The 12 nonisotropic points fall into 4 sets, each
consisting of 3 pairwise orthogonal |
points A,B,C (given any nonisotropilc
point A,Al is a hyperbolic line con-
taining two nonisotropic points # A

B =-<p + 0g> and C = <p + 62q> such

that B | C}.

Claim. These 4 sets are the orbits for T(V) acting on the nonisotropic points.

Proof. It suffices to show that every unitary transvection maps A to A,B or C.
This is clear, for the 9 isotropic points of PV are the 9 isotropic points of

A+B, A+CandB + C. ‘ 1

Now by 5.18B b} T(V) is transitive on the 9 vectors representing the points of
each triangle A,B,C. If v is a nonisotropic vector then T(V)v = T(V)<v>1 has

order 6 (<v>l is a hyperbolic line T(V} ~ T(<v>l) ~ SL(2,2})). Hence

vl
lr(v) | = 9.6 = 3.2, but |ut(w) | = 22.3%and therefore

If n = 3 then U (V): T(V) = 4.

fl

. If n =4, P an isotropic peint then T(V)P is transitive on the hyperbolic lines

through P.
L L

Proof. There are 16 hyperbolic lines L

through P. Let L be one of these, amnd

0 an isotropic point on L, Q # P. Fur-

thermore we let X be an isotropic point
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on the hyperbolic line Ll. Clearly P + X is a totally isotropic line. Take

a point S SP+X s # P,X then S L Q, so Q + S is a hyperbolic line and the
set of isotropic points on Q + 8 is {Q,S,T}, say. Now Y, fizes P and moves

Q to T. Thus T(V)P moves L to P + T. We get 9 distinct images for L on taking
the 3 possible choices for X and the 3 corresponding choices for S. Thus each
orbit for T(V)P acting on“the 16 hyperbolic lines through P contains at least

9 lines. Hence T(V)P is transitive on the hyperbolic lines through P. O

If n = 4 then T(V) is transitive on the hyperbeclic lines.

Proof. Let L be a hyperbolic line and P an isotropic point on L. Let M be an-

other hyperbolic line. If M ¢ pt then there exists a point Q@ ¢ M, Q isotropic
and Q ¢ Pl, so P + Q is a hyperbolic line. By 5.20, T(V) moves L to P + Q and
P+9Q to M. If M ¢ let R be any isotropic point on M. Suppose every hyper-—
bolic line through Q is on Pl, then V = QL U Pl; which is not possible, Hence
there exists a hyperbolic line N through Q, N ¢ Pl. Now we can move L to N and

N to M. O

If n = 4 then T(V) is transitive on the nonisotropic vectors and the noniso-

tropic points.

Proof. Apply 5.18 b) and 5.21. 0
.Ifn=4thenT(V)=U(V)
proof. |ut(w)| = 2°.3%.5. Write v = L 1 L* with L a hyperbolic line. Then

5.24.

T(V) > T(L) x (') and so, by 5.18 a}, 36 dividesl'I‘(V) I Since T(V) T(V) = g

22:1° - 15.16 we get 36.15.16 = 2°.3 3’5 atvides 1T .

Now write V = <v> | <v>l, v a nonlsotropic vector. Clearly T(V) 2 T{=<v> )

1
and|T(<v>l)] = l—~%§£LJJ-— 2, 3 by 5.19. Also, by 5.22, T(V).T(V) = #

nonisotropic vectors = 120 = 3.40. Hence 3 divides |T(V)|, and so T(V)-—U v. O

hyperbollc lines =

If n 24 then (V) = U' (V).
Proof. Induction on n, n = 4 is O.K. by 5.23. Assume n > 4. Let x be a noniso-
tropic vector then T(V) b T(<x>l) ~ U+(<x>l), (by induction hypothesis) hence
|u"(n-1,2) | divides |T(V) |.
Define o(n) to be the number of nonisotropic vectors, o(n) = (22n -1 -

n—-1 n-1 n n, ,n-1

+ 2" - YL - ™ h 2 2P - c1)™2™ L. since T(V) is tra on the

nonisotropic vectors, 0(n).]U+(n-1,2)| divides |T(V)|. Now

(*ln-t (M n
sy .utn-1,20] = 2" -cnh 2 2 2t enh =22 1 @ - -nh

i=2 i=2
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= vt .

Hence, U+(V) = T(V). |

We return to a general field I,

We leave as an exercise the proof of

.25, If v = 1 then U+(V) is 2-tra on the isotropic points. If v 2 2 then U+(V) has
rank 3 and is pri on the isotropic points.

In any case, if v > 1 then U+(V) is primitive on the isotropic points.,

.26. If v 2 1 then U’ (V) is perfect unless (n,[F ]} = (2,2), (2,3) or (3,2).
Proof.
a) case hFOI > 3. Let L be a hyperbolic line. We know vty ~ SL(L,) is per-
fect, so U+(V)' contains all hyperbolic rotations. Hence U+(V)' = U+(V).
b) Case ﬁFOI =3, n2 3. It suffices to prove the result for n = 3. Take a

0 1
basig such that the matrix of our form, E = |-1 0 ; Y skew. Then
a . 11 Y
$ = (a) _ 4 |€eV V), T= 1 e U (W), and (5,T) =
a(a ) 1
1 1 + _
= 1 € U (V)" if we take aa = ~1.
1
c) Case hFOI = 2, n 2 4, It suffices to prove the result for n = 4. Take
E‘=:FO(B) where 62 + 8 + 1 = 0. The same construction applies as in the
. I B +
symplectic case: The form has matrix E = (_g é) and 8 = (O I) e U (V)
if B is 2 x 2 matrix, B = B* 1= (ﬁ)t, T = (2 ?A*)—l) € U+(V) if AeGL(2,4).
*
Now (S,T) := (é AB? _B) represents a transvection if we take A = (é ?),
0 1 * 1 0
B = (1 0) because BBA - B = (0 D). O
5.27.1f v > 1 then PU' (V) is simple unless (n,[F ) = (2,2), (2,3) or (3,2).
Proof. Apply Iwasawa's lemma. 0
If n = 4, tFO] = 2 then U+(V) has rank 3 on the nonisotropic points. We have
for a nonisotropic point <x>:
U+(V) n-1,.n n
o(n) _ 2 (27~ {-1)")
3 3
+
u (v)<x>

-+
u (V)x
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+
The orbits for U (V)<x on the nonisotropic points are {<x>}, the nonisotrop-

>
pic points P L <x> of length k =d(n-1) /3 , and the nonisotropic points
g (n) g{n-1) ‘

P L <x> of léngth % = T - 3 - 1. If P,Q are nonisotropic points,
P L Q then X = # nonisotropic points R L P, Q = 'ﬂ%:}_)__ .

If n =4 we get a (strongly regularly) rank 3-graph on 40 vertices with k=12,
A = 2. There are precisely two rank 3-graphs with these parameters, both ha-

ving PSp(4,3) as an automorphism group. Hence
u'4,2) = put(4,2) ~ pSp(4,3).

We also have

Sp(2n,q) < U'(2n,q).

We conclude this section with another proof of Witt's theorem. Suppose that
V is a vector space of dimension n with a symplectic; orthogonal or unitary
geometry defined by a reflexive sesquilinear form f£. In the case of an ortho-
gonal geometry on V we suppose that f(x,y) = Q(x+y) - Q(x) - Q(y) where Q

is a quadratic form. In all cases we assume that f is nondegenerate.

Suppose that L is a nondegenerate two-dimensional subspace of V which con-
tains an isotropic vector u # 0. Then L = <u,v> where v is an isotropic vec-
tor such that f£(u,v) = 1., If the geometry is orthogonal and Q(u) = 0, then
v may be chosen so that Q(v) = 0.
Proof. We have L = <u,w> for some w such that a = f(u,w) # 0. For a symplec-
tic geometry take v = a_lw. For an orthogonal geometry take v==—Q(w)a_2u +
+a “w. For a unitary geometry we may suppose f is skew-hermitian, then if
B f(w,w) we have B + B = 0. Choose A such that B = A - X and set

-1

v = —Au_zu +a W, {]

IfVv=U@®Wand 0: U~+V, T: W~V are isometries such that im ¢ n im t=0
and f{o(u),t(w)}) = £(u,w) for all u e U, w ¢ W, then the map 0 & 1: V » V:
u+wi g(u) + 1(w) is also an isometry.

Proof. For an orthogonal gecmetry and u € U, w ¢ W we have Q{o(u) + t{w)) =
=Q(c(u)) + Qi{r(w)) + £(ofu),tiw)) = Q1) + Q(w) + f(u,w) = Q{u + w). A si-
milar calculation establishes the lemma for the other types of gecmetry. ]

(Wwitt's theorem). Let U be a subspace of V and suppose that o: U - V is an

isometry. Then ¢ has an extension to an isometry g: vV > V.
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Proof. Let H be a hyperplane of U and let T be the restriction of o to H.
By induction on dim U, T has an extension T: V + V. We may suppose that 7t does
not extend o and replacing o by ¥_1U we may suppose that ¢ is the identity

on H; hence P = im(o- 1) has dimension 1. For u,v € U we have f{c(u},c{v) -v) =

= f(u - d{u),v) so that H ¢ pt and U c pt if and only if o(U) < Pl.

If U g P, thenU nP' = o(U) n P* = H. Let W be a complement to H in P .

Then V = W @ U and for w ¢ W, u ¢ U we have f(w,o{u)) = £(w,u), hence by 5.31

g = 1W @ ¢ is an isometry. ‘

Thus we may suppose that U ¢ P and o() < Pl; hence P < PL. If U £ a(my,

ue U-Hand v e dg(U) -H, then § = <u + v> is a common complement to U and

o(U) in U + o(U). Let W be a complement to U + 0(U) in P and set S = W + Q.

Then P' = 5 ® U=25 o o(U) and by 5.31,1S @& 0 is an isometry of P¢. If

U = uv(U), let 8 be any complement to U in Pl, then again 1S & g is an isome—

try of P, In both cases the extension of o to Pl has been constructed so i
that it acts as the identity on a hyperplane of Pi. Thus we may suppose that h

U=pt=o(U.

Suppose that P <u>. If u = o(v) - v and if the geometry is orthogonal, then

)

Q(uw) Qlo(v)) + Q(v) -~ £(o(v),v) = 20({v) - £(v,v) =0 .

Apply 5.30 to a two-dimensional subspace L g U such that P ¢ L. Then L= <u,w>
where f(u,w) =1 and w is isotropic (and Q(w) = O if the geometry is orthogo-
nal) . Consider the linear functional V + F which takes w to 0 and v ¢ U to

-1
flo (v),w). Since f is nondegenerate there is a vector w' such that

f(u_l(v),w) = f({v,w') for all v ¢ U. Apply 5.30 to <o(u),w'>, noting that
w' ¢ U, to obtain an isotropic vector t(w) (with Q(t(w)) = O if necessary)
such that f(o(w),t(w)) = 1, and <t(w),u> = <w',u>. Then f(o(v}),t{w)) = )

= f(o(v),w'} = £(v,w) so by 5.31,0 @ T is an isometry of V which extends o.

This completes the proof. ]
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6. Orthogonal groups, charIF # 2

Let V be a nondegenerate orthogonal space, char IF # 2. Q(x) = %f(x,x) is a
quadratic form on V, f(x,y) = Q(x+vy) - Q(x) - Q{y). Say Q is universal if
Q(x) takes all values in .

6.1. If f is nondegenerate and either

a) vz 1, or

b) F is finite and dim V = 2, then Q is universal.

Proof.

a) Let x be an isotropic vector # 0 in V. Then there exists a vector y such

that £(x,y)} = 1. For all b ¢« F we have

Q(bx + ¥y} =b + Q(y) .
b) We may assume dim V = 2 and V has no isotropic vectors # 0. With respect

to an orthogonal basis u,v of V, © has the form

Qi{xu + yv) = ax2 + by2 .

Thus we must show: If a,b ¢ IF are such that ab # 0 and ax2 + by2 # 0, for all
¥,y € TF with (x,y) # (0,0) then ax2 + by2 = is solvable for all ¢ ¢ F.

We may assume that a = 1. Since x2 + by2 # 0, Yix,y) # (0,0), ~b is not a
square, and ]F*(/—_b) —>IE'*, X + V-b Yy b x2 + by2 is the norm map, which we

know is onto. O

0(v,f) = O0(v) = 0(Q) denotes the group of igometries of V and is called the
orthogonal group.
As char T # 2, O(V) = {T « GL(V) | Q(T(x)) = Q(x), Vx ¢ V}. If E is the ma-

trix of the form and A the matrix of a linear transformation T, then
t
T ¢ O(V) « AEA =E

In particular elements of 0(V) have det = *1. Thus we have the homomorphism
det: O(V) » {#1} with kernel 0" (V) := {T ¢ O(V) | det T = 1}.
We shall see that 0(V) # 0+(V), hence 0(V): 0+(V) = 2 and the sequence

1 >0ty = o 98Y (211 » 1

is exact.

The elements of 0+(V) are called rotations, O+(V) is called the rotation
group. Clearly 0(V) n Z{(V) = {#1} and n is odd implies -1 ¢ O+(V), n is even
implies ~1 ¢ 0+(V). By locking at the actions on the points of PV we obtain

exact sequences
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1+ {£1} > 0V} » boO(V) 1 ,
+ + . .
1 > {£1} =0 (V) » PO (V) - 1, if n is even .

If n is odd then 0+(v) = PO+(V).
We want to find out which transformations x + x + ¢(x)p are in 0(V). Let

T({x}) = x + p(X)p, P = <p>, ¢ # 0, H = ker g, ¢(p) # -1. Then 1 ¢ O(V) iff
ply} (x,p) + ¢(xX)(pP:y) + g(x)0(y)(p,p) =0 .

Assume T ¢ Q(V). If (p,p) = 0 then by taking x = y we get 2¢(x) (x,p} = O
for all x ¢ V¥, V = H u P* which is impossible. So (p,p) # O.

If g(p) = 0 take x = p then gly){p,p) =0 for all y ¢ Vso V=H ## . So
9{p) # 0.

Assume X ¢ H, ¢(x) = 0. Then gy} (x,p) = 0 for all y ¢ V, hence (x,p} = 0.
Therefore H = PL and 7({x)}) = x + a(x,p)p for some a ¢ F. By substitution we

get

a(x.p)2 + a(x.p)2 + az(x.p)z(p,p) = 0, for all x ¢ V .

Hence a = -2/(p,p) and t(x) = x - g%giig-p. Such a transformation is called
r

a symmetry. Note that a symmetry only depends on P = <p>; we write t = Tp =

= 1_. The determinant of a symmetry equals -1 so 0(V) # O+(V), hence 0(V):

P
+ + * *
0 (Vy =2, Ifn=2, v2z21 (v=rthe index) then 0 (V) ~IF , O(V) ~TF .22.
The theorem of Cartan=Dieudonné
It is easy to prove that
. 0(V) is generated by symmetries.
Proof, Take S ¢ O(V), x a nonisotropic vector. Then {x,x) = (8(x},S(x)) #0
so there exists a symmetry T, such that for S8' := rwS, S'(x) = #x (as in the

L . .
proof of 3.31). Then S' stabilizes the nondegenerate space <x> of dimension
n- 1. By induction on the dimension, S' <ot is a product of symmetries of

<x>>. But a symme try of <x>1 is the restriction to <x> of a symmetry of V,

=Y S'[<x>L =T  ...T |<x>l, - D <x>l. Then 8" = S't_  ...T is the
a a 1 m a a
1 m m 1
identity on <x>' and §"(x) = S'(x) = +x. If §"(x) = x then §" = 1 and if
S"{x) = -x then 8" = Ty In either case S', and hence S, is a product of
symmetries. 3

n:3=>0()" =0 (V).
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Proof.

a

b)

O(V)' is generated by the commutators [Ta,rb] = (Tarb)z. Namely, H := the
subgroup generated by all (Ta'rb)z, is a normal subgroup of 0(V) and O(V)/H
is generated by the cosets HTa and so is commutative. Hence H 2> Q(V)' so
H=0(v)".

Every [Ta,'rb] is a product of commutators of rotations.
n odd. Now -1 ¢ O(V) - ot () se ~T, € 0+(V) . Since ['ra,'rb] = [-Ta,—rb] we
are done.

n even. Son > 4. Let U = <a,b». If UJ‘ is totally isotropic then UJ‘SUJ‘1=U.
But dim Ul = n - @im U 2 n- 2 > 2 and hence U = ut. This is a contradiction
since U contains nonisotropic vectors. Thus there exists a nonisotropic

1l
vector w € U, Then T, commutes with T, and T, SO [-ca,-rb] = [TaTw'TbTw

1

a commutator of two rotations.

By a) and b) o(V)' <0 (V)' so 0(V)' = ot (v)". 0

An important improvement of 6.2 is

{Cartan-Dieudonné). If dim V = n, then any orthogonal transformation n e Q(V)

is a product of at most n symmetries.

Proof. (Artin).

1)

2)

3)

4)

Suppose there is a nonlsotropic vector' u fixed by n. Then n fixes '<u>'L and by in-

. L,
duction on n, n|<u> is a product of £ n - 1 symmetrles and therefore so is

.T].

Suppose there is a nonisotroplic vector u such that w:=u-nu is nonisotropic.
Then we have a symmetry Ty such that n' = T" fixes u. Hence n' is a pro-
duct of £ n~ 1 symmetries, so n = -rwn' is a product of = n symmetries.
Suppose dim V = 2. If there are no isotropic vectors # 0, we are done by
1) and 2). Hence we may assume V is a hyperbolic line, V = <u,v>, u,v a -
hyperbolic pair. There are two cases n: u¥» au, vv a"]'v and n: uw av,

v b a_lu, (a ¢ F). In the first case we may assume a ¥ 1. Since w = u+v
and w - nw = {1 -a)u + {1~ a_l)v are nonisotropic we are done by 2). In
the second case w = u+av is a nonisotropic vector fixed by n, so we are
done by 1}.

By 1), 2} and 3) we are reduced to the case in which dim Vv 2 3, the sub-

space V, of fixed vectors of n is totally isotropic and u-nu is isotro-

1
pic for nonisotropic vector u. We want to prove that (1 -n)V is totally

isotropic. It suffices to show that every vector in (1l -n)V is isotropic.
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Suppose wois o nonsero lusolbroploe vector. Since dim v - 3 thore aoxists a
nonisotropic vector u orthogonal to w. Then w * u are nonisotropic vectors
orthogonal to w. We therefore have that u-nu, w+u- niw+u), w=-u-niw-u)
are isotropic. It follows that w-nw is isotropic and hence that (1-n}v
is totally isotropic.

Now V, < V&

1 1

2
Since n = dim V = dim v, + dim Vf, n is even. And for x ¢ V, {1-n)"x=0,

i.e. (1 —n)2 = 0. It follows that n is a rotation.

¢ (1-mvand (1-mVe (L-mWecv, sov =v = (1-0V.

Thus if ¢ is any symmetry, n' = T is improper and must be a product of
W
k < n symmetries with k odd.

Hence k < n=-1, son = 1un' is a product of k+1 < n symmetries. [l

Dieudonné's theorem 5.15 for the unitary group requires the existence of non-
zero lsotropic vectors. The fact that this condition is not inherited by non-
degenerate subspaces (of dim = 2) if the field F is infinite stands in the

way of giving a procof of Dieudenné's theorem analogous to Artins proof of the

Cartan-Dieudonné theorem. Such a proof can be given for the case of

finite .

Every rotation has a nonzero fixed vector if n is odd and every improper ro-

tation {(i.e. element of O(V) - O+(V)) has a nonzero fixed vector if n is even.

Proof.

a} The intersection of k hyperplanes has dimension > n-k.

b} For S ¢ 0(V) have S = Lal-..Tak with k £ n. Each Tai has a hyperplane of
fixed vectors so S has a subspace of fixed vectors of dimension > n-k.

+
S5 ¢ O (V) ok even =k < n if n odd.

Sc¢o(¥) -0 (V) ok odd = k < n if n even. 0

Siegel transformations

Assume n 2 3, v = 1.

Let x be a an isotropic vector, P = «<x>, U ¢ Pl. Define px u Pl > pl by
r

L
z = Z + Z. 0 Z -
px’u( ) (z,u)x, € P

Then p 1s an isometry of PL.
X,

Hence, by Witt's theorem, there exists an extension of Py u to an isometry
r

of V., We give a direct proof of the existence of this extension and at the
same time prove unigqueness which is important later on. Fix a hyperbolic line

L through P, let Q = <y> be an isotropic point on L, (x,y) = 1.

Now Vv = L L Ll = pt ®Q, P'L =P + Ll. Write u = gx +u' with u' « Ll then

f (2) = P u.(z) because (z,u) = (z,u') for all z ¢ P'. So w.l.0.g. we may
r

"%,
assume u ¢ L1, Extend P u to a linear transformation of V by
r

1
= + v .
Py u(y) ax + by ' velk

+

i
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Now o € ot(v) iff 0, ,(¥)) =0and (b (y)io, (2) = (v,2) for all

. pi, i i ival : = =
Z € This is equivalent to Q(px'u(y)) 0, (px,u(y)'px,u(X)) 1 and

- - L
(px,u(y)'px,u(z)) = (y,z) 0 for all z ¢ L.
Sop, ¢ 0t (v) iff 2ab + (v,v) =0, b = 1 and (v,z) + b(z,u) = 0 for all

L

zeL f.e. iff a = -%(v,v), b=1, u = -v,

]

The unique extension of px a to an isometry of V is given by
r

N px u(z) =z + {(z,u)x, z Pl and
r
_ (u,u) L
P u(y) = - Xty -, ue L,
r

These transformations are called the Siegel transformations,Q = Q(V) deno-

tes the subgroup of O(V) generated by the Siegel transformations.

Let X := the set of all isotropic points of PV. For P ¢ X define
H_  := <p | P =<x>, uce¢ Pl>. For z e p* and T € O(V},
P X,
pax,u(z) = z+ (z,u)ax = 2z + (z,au)x = px,au(z) '
= = -+ =
Pxu, Px,u (z) Pe,u (z+(z,u2)x) z+(z,u1)x (Z.uz)x Py, u. +u (z),
1 2 1 1 72

and

Po_ T Hz) = T N2) + (T iz, wx) =z o+ (z,Tu)T(x) = (2)

Px,u B d ! Pp(xy,u)

Because of the uniqueness of the extensions it follows that

=p and
5 x,u1+u2

T € O(V) .

Pax,u = Px,au’ px,ulpx,u

-1

T =
Ty, u P (x) T (w) *

From these equations and the fact that Q is transitive on X (see 6.12) we

have:

HP is a normal abelian subgroup of QP.

T
HP = HT(P)' for all T € O{V).

Our main goal is to show that @ = O(V)' and to apply Iwasawa's lemma to the
action of Q on the isotropic points to show that Q/Q n {#1} is a simple group.

There are exceptions to both statements.

o e— o — e e



- 49 -

We assume n > 3, v = 1.

The set of isotropic points X is stable under the action of O(V) on the points.
Moreover, if n ¢ O(V) fixes every isotropic point, then n fixes every hyper-
bolic line pointwise, so n fixes every point. That is, the kernel of the ac-
tion of C{v) on X is {*1} and PO(V) acts faithfully on X. In particular,
therefore, we have a faithful action of 26 ~ 2/2 n {#1} on X.

Concerning the action of ¢ on X, the essential fact for our purposes is "
6.9, {(v,n) # (2,4) = Q pri X.

This is a conseguence of ©.14 below.
Let o := {(P,Q) ¢ X2 | PLQ, P#Q
3= {@, e x2 | P L0}

6.10. 1} v=1=a =0,
2) v= 2, n= 5= (X,0) connected, diameter 2.
Proof.
1) definition.
2} P,Q ¢ X, P L Q. There exists a totally isotropic line L through P. Then

L 1

. . 1
Lepl, pt oot =(p+ @t cpt. Since dimL = 2, din(P' 0 Q1) =10 - 2,

dim plt = n - 1, L and (Pl i Ql) interseci in an isotropic point R. [

6.11, {X,B) connected, diameter 2.
Proocf. Let P=x<x>, Q=<y> ¢« X, P 1L Q.
There exists <u> ¢ Pty QL. Can assume (x,u) = (y,u) = 1, Replace u by
z = u - ax to get ¢(z) = O.
Then R = <z> £ P~ u @', R e X. o -

6.12, Q tra X, B ¢ xz/n.
Proof.
i) rirst show Hy tra P, for P « X (wherc P, := {Qc x| (P, ¢ 8.
Let P = <x>» and take @ = <y> and R = <z> in P_. Assume as we may that

{x,2z) = 1. Have V=P + Q + U, U= (P + Q)l = <Xry>L 50

(xey)
Z =ax + by + u, u € U. We see that b=1, a=-Q(u), so z=y-Q{u)x + u,
Hence Oy {y) = z as required.

ii) Next prove (I tra X. Take P = <x>, Q = <y> ¢ X. Claim: there existsaRe X, R /P,and
R L Q. If P 1 Q have this by (the proof of) 6.11. Assume P L Q. Then

L = P + Q is a hyperbolic line. Can assume (x,y) = 1. Let u be a non-




isotropic vector of LJ' and let z = x - Q(u)y + u. Then Q(z}) = 0,
(z,x) = -Q(u) # 0 and (z,y) = 1. Take R = <z>. Now QR moves P to Q by
i).

ili) B« X%/0 by 1) and il). ' [

6.13. vz 2, nz5=qyc¢ X2/Q.
- Proof. Take Q,R ¢ Pa c P~ - {P}.
i) Assume Q@ / R, Then Q@ + R ¢ PT so there exists a hyperbelic line L through. |
P such that ¢,R ¢ Ll.
Then Q(LJ') moves Q to R by 6.12. But
Q(LJ') is naturally in Q(V)P. Hence
Q(V)P moves Q to R.

ii) Assume Q L R. There exists S ¢ Pj' such

P

that § / ¢ and S [/ R: there exists <u> < pJ' such
that <u> ¢ Q'.L U RJ', so {u,x) = 0 and can assume {(u,y) = {u,z} = 1 (where
P = <x>, QO = <y> and R = <z>}.

Replace u by s = u - ay to get Q(s} = 0. Take S = <s>. Then S}P moves

to S and S to R. il
By 6.10, 6.11, 6.12 and 6.13 we have

6.14, v l = 2-tra X.

W

v 2, nz 5= pri rank 3 X.
Now we turn to the problems of identifying {i as the commutator subgroup of

0(V} and proving that @ is perfect.

6.15. § =0(V}'.

Proof.

i) L hyperbolic line, u nonisotropic vector. There is p ¢ £ such that p(u) « L.
Namely thereis u, € L such that Q(ul) = Q(u) and then there exists n ¢ O(V) such
that n(ul) =u, By 6.12,88 is traon the set of hyperbolic lines so there is p ¢ §
such that pn(L) =L. Then p(u} ¢ L. Thus if 'l.'u is a symmetry, there is
p « § such that p'rupql = T, u' ¢ L.

ii) o =<t | wc L>.

0(L) acts trivially on Ll, nt n{L is an isomorphism of OL onto O(L).
Define O: := the subgroup of OL generated by products of pairs of sym—

metries with u ¢ L.



O; 5 O+(L) abelian as L is uyperbelic line. If ¢ € 0+(V) then

L =Ty .--1T2k’ uy nOfisotrc;ic. By i) thereispi e Q suchthatulf_==pui € L.
Then f = oy Tu{pi"'p; T;;kp2k = prui...ruék, p €  as 2 < 0(V).

Hence ot (v < R07 . We kncw that 2 £ 0¥ (V), hence O' (V) = szo;.

n ot v)y/a ~ O;/O; N R a2belzan.

Lo =z o wr.

L Q 2 0N by 6.3. 0

6.16. v = 1, n = 3, (n,|F]) # (3,3), (v,n,[F])} # (2,4,3) dimplies & = O(V)"' = Q'.

Proof. By 6.15 it suffices to prove that i = Q'. Show Deu © Q' for all iso-
r
tropic x and all u ¢ <x>l. Let L
L
L = <x,y> be a hyperbolic line <y> L

through <x>. We may assume that

u ¢ Ll. Let OL be as above,

L
o. ~ o(L). <x> - <x>
L, =
For a eZF* there exists na € 0L such .that nax = ax, nay = a ¥y. Moreover,
*
there exists 1 ¢ OL such that tx = y, 1y = x. If bF| 2z 4 we may take a ¢ FF¥
; 2 2 ‘ -1 -1
with a” # 1. Then for a = n_, B = Py, (a2-1) "1y’ aBa B T = Px,u’
Hence p € ' since g ¢ @ {(if a group G is generated by involutions then

2 A 2
g ¢ G' for all g ¢ G, soa = n, « o(v)' £ Q).

Assume FF = GF(3), n2 4 and v =1 if n = 4.
It suffices to assume that u is nonisotropic.
. . . . L L
Claim: there exists a nonisotropic wector v ¢ L n <u>L such that Q(u) =Q(v).

Case i). n=4, v =1,
L' is 2-dimensional and has no isotropic vector # 0. L' = <u,v>, (u,v) =0
and Q(u) = @{v) as Q(u) = -Q{v} implies that L' is hyperbolic.

Case ii}. n = 5.

1

. : . 1
L™ n <w>t is a nondegenerate subspace of dim 2 2, so Q restricted to L n <t

is universai.
L Qv = Qlu) for some v ¢ <u>‘L n Li.
This proves the claim.

Now there exists 1 ¢ O(V) such that t(x) =x, t{u).=-v, t{v) =u. So 'Tz(x) =X,

Tz(u) = —u and 12 1_2 =p
px,u px,u x,u”
. o,
-px'ucﬂ U

Now a direct application of Iwasawa's lemma gives

e
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v21l, nz3, (vn) # (2,4}, (nFF) # (3,GF(3)) implies /8 n {+1} is simple.

In addition to the guestion of what is going on in the exceptional cases of

6.17 we are left with certain cbvious questions about the structure of O(V)

o(v)
ot W)

?
(V) = o(v)!
Qv) n {+1}

Before going into these questions we take a look at orthogonal geometries

over finite fields (char # 2).

Orthogonal groups over finite fields {(char # 2)

We takeTF = GF(q), q odd. Then F~ = Cl'l:"w)2 ] CIF*)zg, where g is a fixed non-

square. Let V be a nondegenerate orthogonal space of dimension n over F.

Case n = 1: V = <x>, X nonisotropic, either (x,x) =1 or (x,x) = g.

Case n = 2: V = <x,y>, V is hyperbolic iff V 1s isotropic, i.e. iff v = 1;

in this case we put € := +1. V has no isotropic points iff v = 0; in this
case we put € := -1. A hyperbolic line has exactly 2 isotropic points, Indeed,

if {(x,x}) = {y,y) =0, (x,y) = 1 then (ax + by, ax + by) = 2ab = 0 iff a = 0
or b = 0. 5o the number of noniseotropic peintsequalsq - £ in both cases.
Hence,

# nonisotropic vectors = (g-e)(g-1),

# isotropic nonzero vectors = q2- 1-(g-e}(g-1}) = (g-1){e+1l)=gq+egq-1-¢.
The symmetries in O(V) are in 1-1 correspondence with the nonisotropic points.

+
The symmetries constitute a coset of O+(V) in 0(V) different from O (V).

Therefore [O+(V)] = g = E.
We may assume that there exists an x ¢ V such that (x,x) = 1. Then
V= <x> L <x>l, V= <xX,¥>, ¥ ¢ <x>l. We may take y such that (y,y) = -1 or

- g- Now {ax + by, ax + by) = a.z—b2 or a2 - gbz, s0 V is hyperbolic if (y,y)

= -1, nonisotropic if (y,y} = -g. The matrices of the forms are (1 _1) and

1 2 .
{ -g) respectively; the quadratic forms are x2—y2 if e=+1 and x" -gy if
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Case n 2 3: If n = 3 (i.e. if n 2 3) then V contains an isotropic nonzero
vector. Indeed, take x € V such that (x,x) = 1, there exists a vy ¢ <x>l,
such that (y,y) = -1 by 6.1. Now x + vy is isotropic.

By 3.34 we have V=H 1l W, where H

2r 2r
perbolic lines, and W is a nondegenerate space of index 0. We have the follo-

is an orthogonal direct sum of r hy-

win% possibilities for W:

W is a nondegenerate point, W = <x>, (x,x) = 1 or (x,x) = g
W is a nonisotropic line W = <xX,¥>, (x,x) =1, (x,¥) =0, (y,y) = -g.
W=20.

Thus there are four types of geometries:

] oad {I V=Ly leeol Iy g 0 <%0, <x,x> = 1
IT Vv = L1 ...l Lk(n—l)l<X>’ <X,X> = g:
' {III v o= L1 l...1 Lgn-l 1 W, W a nonigotropic line, v = E%Z
neven n
v v = L1 laosad L%n r V= 35 -

There is no essential difference between I and 1I, that is, they have the
same group of isometries. For type III we define € := -1, for type IV we put

€ := +1.

Assume n = 3, Let V be a nondegenerate orthogonal space of dimension n. Let
p{n) denote the number of isotropic nonzero vectors.

1
Let P be an isotreopic point, L a hyperbolic line through P, then L is a non-

degenerate space of dimension n- 2.

# isotropic points = gg% =1+ {(In_:;i q + qn—2

-2
Lopm) =qe(n-2) +q “(g-1) +q- 1=
= qon-2) + g1 - g% 4 q-1.
-1 -3
o(n) - g +1=gqletn=-2 -q > +1)
-n/2 -1 -({n- - -3
a2 - @) =g @B 2 ) g™
-n/2 n-1 ,
Hence gq (p{n) - g + 1) =: ¢ only depends on the parity of n.
p{n) = cqn/2 + qr-l-~1 - 1. '
Types I and II: ¢(l) = 0 implies ¢ = 0, so ¢(n) = qn"1 - 1.
Types IIT and IV: p(2) = g+ eq -1 - ¢ implies ¢ = ¢ - % ; SO
2  n-1 2 -
p{n) = qn/ ¢ - & + qn - 1= (qn/ - s)(qn/2 1 +e) .

q
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Every hyperbolic line contains exactly 2 isotropic points. Hence, X{n), the
number of hypérbol;i_.c pairs of vectors, equals qn-zfp(n) - Put ¢(n) = ]0+(V)[
and let L = <x,y> be a hyperbolic line, x,y a hyperbelic pair of vectors.

+
Since 0 (V) is transitive on the hyperbolic pairs of vectors,

¢(n) = A{n) |O+(V)x I Since O (V) fixes every vector on L, 0+(V)x ~
0" @) mence 071 | = A 07 @[} so s = Amo(n-2).
Case n odd: ¢(1) =1, ¢(n}) = A(n)A{n-2)...A(3) = q(n'2)+(n‘4)+...(qn—1_ 1
(@ - 3.0t -1

w25

4 2i
¢(n) =gq I (g7 -1}
i=1

case_n even: O(V) = 0"(V) + (O(V) - ot (v)), so for n = 2, ¢(2) = Jot (|
= |ow) - 0+(V)I = # symmetries = # nonisotropic points = q - €.

#{n) = A(n)x(n-2)...2(4) (g-¢€)

n
2
=2)+({n-4)+,..+2 i i-1
= g2 Hind) T (@ -e) g rerig-e)
i=2
-2
n(n-2) n L 2
4 2— H (q - 1)
=q q -
(n—1)2 n-i
2 2 9
a I (g -1) if n is odd
o) | i=1
n-2
n{n-2) n ——
i 32 2 g
q qg"-ey I (g -1 if n is even .
i=1

The spinorial norm

Let V be a nondegenerate orthogonal space char ¥ 2. For o e O(V) ,

g = Tal...‘r define 8(v) := (a,,a,)(a, ay)...(a ,a e /-"F

8 (o) is independent of the representation of ¢ as a product of symmetries

(proof later).

It is immediate that 8: O(V) —»:IF*/]F*‘? is a homomorphism of groups.
Definition. (V) := O(V)'.

For n = 3, v =2 1 this is consistent with our previous definition (except for
(n, F]) = (3,3, (v,n, [F]) = (2,4,3)). As im 8 is Abelian, (V) < ker 8.

+ .
call 8: o' () »F*F*? the spinorial norm and O'(V) := ker 9]|0" (V) the spi-
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norial kernel. We have (V) < 0' (V). The ideal situation is: Q(V} = 0' (V)

and 1 - Q(v) +'O+(V) ﬁ E‘*/E‘*Z + 1 is exact.

. 0 =T 1T € 0'(V) implies 0 ¢ Q(V).
ab %2 2 *
Proof. 8(c} = (a,a) {b,p)F =1 sc (aya){(b,kb) = a", o e¢ F . Let
b1 1= iééél b then T, T and (bl'bl) = (a,a) so, by Witt's theorem,
there exists a A ¢ 0(6) such that A(a) = bl' Then ltal_l =Ty - Let
£ : 0(v) » O(V)/Q(V) be the natural map then f(g} = f(TaTb) =1f(Ta T ) =
= £ At A7) =1, so 0 € V). ! N

6.20.

6.21.

6.22.

6.23.

If n =2 or 3 then O0'{(V}) = Q(V).

Proof. Cartan-Dieudonné.

If v 2 1 then 0'(V) = Q(V).

Proof. Let L = <X,y> be a hyperbolic line, x,y a hyperbolic pair of vectors.

(1) o' (L) = Q(L) by 6.20.

{2) If a € V then there exists a b ¢ L such that (a,a) = (b,b)

2aB) .

0' (V) . Choose bl,...,bk € L such that (ai,ai)==(bi,bi),

{(ax + By, ax + By)

let g =1 ses T
a

a
i= 1,...,%. Put ¢

m

k
1 b tee Tb then 6 (g) = 9(01) = 1, Let

£f : O(V) » O(V)/Q{(V) be Ehe natu%al map then f(o) = f(cl) (there is a

T

Ai e 0{(V) such that Ai(ai) = bi' etc.) . Each Tb fixes every vector in

L' soo, =0, 1 1,1 and by 6.19, 0, ¢ Q(L) sincs 8(oy) =6(0,) = 1.

i 2 2
Therefore 01 e (V) so f£(g) = f(ol) =1, o € Q(V). [1

If v>1thent oW -0 () L F*/F*% > 1 is exact.

*
Proof. Since v = 1, ( , } takes all values in F . 1

-1 ¢ O'"(V) iff n is even and the discriminant is a square.
+
Proof. If n is odd then -1 ¢ O (V) so ~1 ¢ O'(V). Suppose n is even. Let

al,az,...,an be an orthogonal basis of V. Then -1 = TalTaz,...,ran S0
6(-1) = discr V. _ 3
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Let F = GF(q), q odd. Now F o E‘*Z = 2 so O+(V) : (V) = 2 (the case
n=2, v=0 isincluded), ~|aW) | = 5jo" (W |. [paw)| = x|oTw)| if
+ .
-1 4w, Paw)| =%lo (W | if -1 ¢ W) .
By 6.23, -1 ¢ (V) iff n even and discr V ¢ E‘*z. If n is even,discr V = (_1)n/2
or (—1)n/2g, g a nonsqguare according as € = 1 or € = -1. Hence discr V is
a square iff 4|qn/2 - €
r n-1i
L(n-1) 2 21
e | T (g -1) if n odd .
i=1
|po(v) | =
n-2
L a
- 21 2
L2 (2 h @iy, a- Gad- o
i=1

if n even.

Clifford Algebra

Let V be an orthogonal space, char # 2. We want to construct an algebra
generated by V such that xy + yx = 2(x,y). T(V) denotes the tensor al-

gebra on V, A denotes the 2-sided ideal in T(V) generated by the elements
x99y +y@®x - 2(xv) , X,¥y € V. C(V) := T(V)/A is the Clifford Algebra and

we have a linear map V»C(V), defined by x i» A+ x. Let al,az,...,an be an

orthogonal basis of V. Put e; = A+ a, and for all H ¢ {1,2,...,n} put
ey = eilei e ei , where {11,12,...,1 } =1, 11 < i2 < ... < ip , i
eg := 1. Thén {e, |H c{1,2,...,n} is a basis for C(V) so dim C(V) = 2.

= - p (A,B) . .
A B YA B Saip’ YA B (- 1) I (al,a ) with p{A,B) = # of inversions

in the sequence obtained by JuXtaposmng A and B. Identify V with its
image in C(V) (so ai is identified with ei).

Evidently V generates C(V).

For x,vy ¢« V xy + yx = 2(X,¥), xy = -yx if x 1 vy, x2 = (x,x).

C+(V) 1= ZE‘eH with |H[ 2 0 (mod 2)

¢ (V) :=IFe_ with |[E] = 1 (mod 2)

H
+ - - —_—
C{Vv) =C (V) & C (V), dim C+(V) = dim C (V) = 2n 1 and +.+ © +, +.—- & - etc.
C+(V) is a subalgebra of C(V) .
We have an anti-automorphism vy of T{(V) such that vy : X, 8 ... ® xpu»-xp ® ... 8 x4

and y(A) < A, Hence y induces an anti-automorphism J of C(V) such that

+ - .
J o xl e xp\+ xP...xl, xi e V. J stabilizes C (V) and C (V). Define N{g) = an

for o € C(V).




Example. V nondegenerate, n = 3, a an orthogonal basis of V.

= 17 %27 %3
C (V) is generated by 1, i

1= 88y 1y =23, 1y=a.a,
Lyd, = iyl = —(aga)is il = —(aya,) (agay)
loly = mizl, = -(agsapd, ig = -(apa(agay)
i3ty = ~ijiy = —(ay,a i, i§ = -3y @y .

+ . . .
C (V) is a generalized gquaternion algebra.

Nixg + x4y + %1, + x3di4) =

= + 1 + _ . - . _ .
(xo X, i x,1i. + x.1i )(x xlll x212 x313)

11 272 373
2

_ 2 2 2
=Xy * (a2'a2)(a3'a3)x1 + (al,al)(a3,a3)x2 + (al,al)(az,az)x3 .

Suppose v = 1, X,y a hyperbolic pair of vectors, a, = x + Ly, a2 = x - hy,

i
*
a Then (al,al) = {a ,a2) =1, (a3,a3) =a ¢ F

a nonisotropic vector 1 a,,a

3 172"
We have in this case a faithful representation of C (V) inIFz, the algebra of the

2 x 2 matrices over F.

1 0 ) 0 a , 0 a ) ‘10
1»[0 1] . llh[l O) ' 1_2\-3»[_1 0] ’ 13H‘[0 _1} . These

+ +
matrices span E‘z so C (V) = E‘z. The group of units of C (V) is GL(2,F) .

For 8 < {1,...,n} we have eg = (—1)* I (ai.ai). Hence es ls a unit and

ie8S . _

e_l is a scalar multiple of e_. If S,T < {1,...,n} then e e = (_1)lS[|T| [s nTle e

S sT

-1 ISI$T| |SnTT
so e e g = (-1)
Ts T
. Define CO(V) := centralizer of C V), C {V) is spanned by the eg ¢ CO(V).
-1
Let 5 < {1,2,...,n} then eg ¢ Co¥) le eTeSeT = e, for all T c {1,...,n},
[T| = 0 (mod 2), i.e. iff |s||T[ s nT] =0 (mod 2) for all T, |T| =0

{mod 2). Hence, S = @ or 8 = , CO(V) =TF & E‘eﬂ.

+ . , . X .
The center of C (V) is F if n is odd, C.(V) if n is even. The center of

C(V} < center of C+(V), and eQ e center gf c{v) iff eieﬂe;1 = eQ for all

i, i.e. iff |@] - |9 n {4} = 0 (mod 2), i.e. iff n - 1 = 0 (mod 2}.
Therefore, center of C(V) = F if n even, center of C(V) = CO(V) if n odd.
Centralizer of C(V) in C+(V) = center of C(V) n C+(V) = TF.

We say that o,B ¢ C(V) anticommute if of = -Poa. We determine the elements
which anticommute with all elements of V. eiese;.1 = es, for all i «

|s| -|s n {i}] =1 (mod 2), for all 1 @S =2, n = 0 (mod 2). If n is odd

no element anticommutes with all elements of Vv, if n is even Eeg anticommutes

with all elements of V.
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. . -1
Define R(V) := all units a ¢ C(V) such that & xa ¢ V, for all x ¢ v,

and RO(V) :+= all products of nonisotropic vectors (regular elements}),

Then RO(V) < R(V) (Suppose a is a nonisotropic vector then ale_ 2

1 2(a,x) (a,a)
and ax = 2(a,x) ~ xa for all x ¢ V, hence axa~ = ——Té—gr a-x= - Ta(x)).
!

For each o ¢ R(V) we define Su : V>V, x» axa . Since Xy + yx = 2(x,y)

for all x,y « v it follows that 2(x,y) = Sa(xy-kyx)==sa(x)sa(y)-+Su(y)Sa(x) =
= 2(Sa(x), S“(y)) for all %,y ¢ V, so Su c 0(V). If a is a nonisotropic
vector,Sa = =T_ .

a
We have an exact sequence

I‘* (n even) s
1 » N -+ R(V} =+ Oo(V)
CO(V) {n odd)

where C;(V) is the group of units of CO(V) and § : R(V) - O(V), o w» S . Let
s ]

+
D{V) := R(V) n C (V) then we have an exact sequence

1+F" > D{V) g O+(V) + 1
in all cases.
Proof. Let o « O(V), ¢ = TalTaz ce.T_ . Put 0 = a1 e dk ¢ RO(V) then
S, = (-1)0. Note that s(D(V)) 3 ot(v).

Case n even: Now im S = O(V) for -1 is a rotation, so, if ¢ is improper,
Su is improper.

We have an exact sequence

* s
1 +F -+ R{V) >0(V) »1 .,

Claim R(V) = RO(V): Take B € R{V), let g = 8 then o = Sa for some o ¢ RO(V).

8!
Therefore B ¢ E'*u so B ¢ RO(V). Hence, D(V) = all products of an even

+
number of nonisotropic vectors, S{(D(V)) = 0 (V) so

1>F >pwv) Yot v » 1

is exact.
Case n odd: Now im § = 0+{V). Suppose im S = 0O(V) then -1 = Sa for some

a ¢ R(V), i.e. Sa(x) = -x, erv. Hence axa = = -X, for all x ¢ V, which is
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impossible if n odd. We have

L+ Co ) > R(V) S0 v) +1 , exact

+
1 - I‘* > D(V} g o (V) =1 , exact.

The same argument as before gives:

D(V) = all products of an even number of nonisotropic wvectors. [

J
Let ¢ ¢ D(V), @« = a,...a, then N(a) = o = al...akak...a1 = (al,al)...(ak,ak)

17 %
s0 0(S ) = N(a) F "2, put D,(V) = {a & DV |N(a) ¢ F *?} then,

1>F" D) 3ot +1
is exact. Put D {V) = {a ¢ D(V) |[N(a) = 1} then,

1 > {£1} + Dy(V) Sorw) » 1

is exact.

Applications.

Spinorial norm. & : O(V) - E‘*/E‘*z is well-defined.

Proof. If Ty =T = 1 then (al,al)...(ak,ak) € E‘*2 for k even, so
1 k ' .
0 = ay...a € E(V), N{a) = éal,al)...(ak,ak). Since 1 = Tal...rak = Su'
n € ker 8 = F so N{a) = a . (]
Generic isomorphisms (ISI)
n=3. We determine the fixed elements of J : es = eg = (-1} 2 es iff (Iil)
éven, i.e. iff |S| =0 or 1.
Fixed elements of J: F & V
Fixed elements of J in C+(V) : F

Fixed elements of J in ¢ (V) : V.

. . \ \ +
Claim. D(V} = all units in C+(V). Namely if o is a unit in C (V), then

J J J J -
N(a)” = (aa)” = oo = N(a) so N(a) ¢ F* and o * =

J
N(2) a . Hence
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-1 1
. T ON(a)
X0, € V for all x ¢ V. Therefore o € D(V).

aan is fixed by J and in C (V) for every x € V, so

Take v = 1 : CT(V) = F,, D(V) ~GL(2,F) so o' (V) e PGL(2,F) . For

+ . . ; .
a ¢ C (V}), N{o) is the determinant of the corresponding element in F

50 DO(V) e SL(2,F) and Q(V) = 0'(V) =~ PSL(2,F) .
2

n=4. CO(V) =F& :Feg, discr Vv = G, e, = G.

case v = 1 : (this corresponds to v = 0, G not a square) PR({V) = PSL(2,F (/E));

if ¥ = GF(q} then PQ(4,q,e= -1) = PSL(2,q2) -

case v = 2 : PR(V) = PSL(2,F ) x PSL(2,F) ; if F = GF(q) then PR(4,q,e= 1) o

PSL{2,q) = PSL(2,q).
For details of the case n = 4 see [1] or [61.

2
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Appendix

The geometry of the Klein quadric

In this appendix we assume familiarity with the elementary theory of the exterior
algebra of a vector spacé and with the theory of reflexive bilinear

forms.Our central theme is the relationship between the geometry of a

four dimensional space and the geometry of its exterior square. From

this we obtain certain isomorphisms between classical groups and ulti-

mately a detailed description of the Suzuki groups.

Grassman's relations

Let V be a vector space of dimension n over a field F, let Apv denote the
p-th exterior power of V and let APV denote the p-th exterior power of
the dual space v' oot V. There is a pairing between A V and APV which
allows us to regard APV as the dual space of A v. For vl,...,vp €V

and @1,...,¢ € V the pairing between v, A ... A vp and ¢1 Aaaa AS

1
is given by

(1.1} <vl A as. A vP p wl A ave A mp> = det(mi(vj)) .

More generally, there is a bilineaxr mapping L : APV X Aqv - Ap-qv called the

interior product which reduces to the above pairing when p = gq. For £ ¢ APV

and o ¢ Aqv, £l a is defined by
(1.2) <E L a,B> = <E,a A B> for all g ¢ AP % .

Let SRR be a basis for V and let S PRAREY LN be the corresponding dual

basis for V'. If P is a subset of {1,...,n} we shall suppose that the elements
i ,...,i_of P are ordered so that i, < i, < .., < i , then define e_=e. A ...
1 p 1 1 P74

and wP = wi A vae A mi . The elements eP with [P] = p form a basis for

APV. In terés of these Pasis elements the interior product becomes

(1.3) ePL.tu =

A e,
i




where €p is the sign of the permutation which takes P in its natural order
’

to (Q,P -~ Q) with Q and P - Q in natural order. From (1.3) we deduce that if
W is a subspace of V and £ « APW, then £ L. o € Ap-qw for any a « AqV.

An element of APV is said to be decomposable if it can be written in the
form v. A ... A v _for some v,,...,v_ ¢ V. The vectors v_,...,v_ are linearly
1 P 1 p 1 P

dependent if and only if Vl A aed A vp = 0. If vl,...,vp and w1

two sets of linearly independent vectors, then the subspaces <v

t---sW_ are
P

gV 2>
1’ JP

and <w.,...,w > coincide if and only if v, A ... A V_ = a W, A ... AW
1 P 1 P 1 p

for some non-zeroc element a ¢ F. A convendent characterization of the

decomposable elements is given by Grassman's relaticns:

(1.4) £ € APV is decomposable if and only if

EA(E L 9) =0 for all ¢ ¢ Ap-lv.

2

Proof. Suppose that £ = vy A vee A VP and ¢ € Ap_lv.

From the comment following {(1.3) we have £ L ¢ ¢ <v
EA(E L o) =0.
Conversely, suppose that £ ¢ APV and £ A (£ L @) =0 for all ¢ ¢ Ap_lv. ILet W

1,...,vp> and therefore

be the subspace of V consisting of the vectors v such that £ A v = 0. Let

el,...,e be a basis for W and extend this to a basis el,...,en for V. We

k
can write £ = EEPeP, where EP ¢ F and the summation is over the p-element
subsets of {1,...,n}. Since £ A e; = 0 for 1 < i £ k it follows that

E=e, A ... A e A £' for some E' ¢ AP_ V. But now (1.3) implies p = k,

7 1 k
hence £' ¢ F and £ is decomposable. ]

(1.5) I£E e AV, nehAvandu e v*, then

(EAMLw=(Lw an+ 0P ArAmLw .

Proof. This is a consegquence of {1.3) and the fact that the formula is

bilinear in £ and 7. O



To conclude this section we describe the relationship between linear
transformations of V and the interior product. A linear transformation
T of V induces a linear transformation APT of APV such that

(ApT)(v1 Avee AV )} = Tvl A ees ATv . In turn A T induces a linear
transformation APT of APV such thatf<§,(ApT)a> = <(ApT)£,a> for all

£ ¢ APV and o ¢ APy, an easy calculation now shows that
(1.6) (A TEL (AMa) = ((ATE) L a
o~q (£ {( o £

for all £ ¢ APV and o ¢ Adv.

. The Klein guadric

We shall continue to use the notation introduced in the previous section

and now we make the assumption that the dimension of V is four. In this case
we shall show that Grassman's relations for elements of A2V reduce to a
single quadratic equation. First suppose that £ = z r
~ i<j3

e = e1 A e2 A e3 A e4. Then

..&, A e, and set
1] 1 J

(2.1) EAE = 20(5)e , where
(2.2) 208 = PyaPyy ~ PygPoy * PigPyy -
The function Q : A2V + F is a non-degenerate quadratic form on sz of

index 3. Its polar form is £{(f,n} = Q(f + n) - Q(E) - Q(n) and we have

(2.3) (i) EAn =f(g,n)e . for all £,n ¢ AV .

(11) EA(E L ® =Q(E)eL 9 forall Ec AV, ¢ V.

2
Proof. From the definitions of Q(£) and £(£,n) we have 2 A n = 2f(£,n)g and
from (1.5) we have (£ A f) L 9 = 26 A (E . 9} so that (i) and (ii) hold for

all fields of characteristic zero and hence for all fields without restriction. [!
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{2.4) E ¢ A2V is decomposable if and only if Q(&) = 0.
" Proof. This is an immediate consequence of (1.4) and (2.3) (ii). ]

The set of points of the projective space P(A2V) which are isotropic with

respect to Q is known as the Klein quadric. In section 1 we saw that the

decomposable elements of APV represent the subspaces of Vv of dimension p.
In particular, the points of the Klein guadric are in one to one correspon-
dence with the lines of PV; the line L = <u,v> corresponds to the isotropic
point (L] = <u A v>.

If X is a set of points of P(AZV), let X'L denote the points orthogonal to
every point of X with respect to f. From (2.3) {i) we deduce

(2.5} If L and M are lines of PV, then L and M have non-empty

intersection if and only if [L] ¢ [M]l. ]

For each point P of PV let [P] denote the set of peints of P(sz) which

correspond to the lines through P. By (2.5) we see that [P] is a maximal

totally isotropic subspace of P(A2V); that is, a plane contained in the

Klein quadric. Similarly, if H is a plane of PV, then the set [H] of the

pointis of P(sz) which correspond to the lines of H is also a totally isdtropic

plane of P (sz) . Atotally isotropic line of P (AZV) is spanned by an orthogonal pair

of igotropic points and by (2.5) these points correspond to a pair of intersecting lines of PV
Thus a totally isotropic line of P(sz) corresponds to a pair (P,H),

where P is a point of PV and H is a plane through P; the points of the

totally isotropic line correspond to the lines of H which contain P. From

this we deduce

(2.6) (1) There are just two types of maximal isotropic subspaces of P(sz),
namely those of the type [P], where P is a point and those of the type [H],

where H is a plane.

{ii) Each totally isotropic line of P(sz) is contained in exactly one

totally isotropic plane of each type.

(1ii1) Distinct totally isotropic planes of P(AZV) are of the same type

if and only if their intersection is a point.
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An interpretation of the non-isotropic points of P(AZV) will be given in

section 3.

If T is a linear transformation of V, then (A4T)g = (det T)g and so from

(1.6) and (2.3) (ii) we have

.7 QU(A,TIE) = (det T)Q(E) for all £ e AV .

Furthermore, if ¢ is an automorphism of F and £ = Z pijei A ej we define
i<j

g(g) = E o(pij)ei A ej. Then Q(o(£)) = o(Q(&)) and it follows that every

semilinégg transformation of V induces a semilinear transformation of A2V
which preserves the zeros of Q.

Thus we have a homomorphism from the group I'L(V} of invertible semilinear
transformations of V to the group FO+(A2V) of invertible semilinear trans-
formations of A2V which preserve the zeros of Q; the kernel is easily
seen to be {#I}. Let PIL(V) and PFO+(A2V) denote the groups induced by
I'L(V) and P0+(A2V) on the projective spaces PV and P(sz). By the
Fundamental Theorem of Projective Geometry PIL(V) is the group of all
collineations of PV. The homomorphism from T'L(V) to FO+(A2V) induces an
embedding of PIL(V) in PPO+(A2V). The elements of PFO+(A2V) which do not
come from collineations of PV correspond to correlations of PV and the

rest of this section will be devoted to describing this correspondence.

A correlation of PV is induced by a semilinear isomorphism f : V + V* or
equivalently, a sesquilinear form b(x,y} = 8(x)y. If 0 is the field
automorphism associated with 8, the transpose of B is defined to be the
isomorphism Bt : V- V' which takes y to 0_1b(-,y). Let B* dencote the

inverse of st. If W c V, the annihilator of W is WO = {9 ¢ v*[ P({w) =0

for all w ¢ W}, similarly the annihilator of X < V* is XO = {vev I X{v) =0
for all ¥ ¢ X}. Recall that when W is a subspace WOO =W and U c W implies

WO < UO.

(2.5) If W is a subspace of V, then B(W)0 = B*(WO) .




Proof. v e B (W) iff 8Y(v) ¢ WO iff b(w,v) = O for all w ¢ W iff BW) e <v>’
for all w e W iff v ¢ B(w)°. '

The correlation induced by B is the permutation of the subspaces of V which
takes W to B(W)O. From B we obtain an isomorphism A2V > A2V which sends u A v
to Bu A Bv and which we again denote by B. There is alsoc an iscmorphism

sz > sz which sends ¢ to e L. ® and its inverse sends f « AZV to the

linear functional £({f,-) because from (1.3) and the definition of f we have
(2.9) eL f(g,-) =L for all £ e AV .

Thus the mapping g : sz - sz defined by Eg =elL BE is a semilinear

transformation of A2V and we have

(2.10) Q(BE) = <e,Be>0 (Q(E)) .

Proof. Since £ -+ £(£,-) is the inverse of 9 > g L. ¢ we have 2Q(Eg) = f{g L BE

= <e L BE,BE> = <e,BE A BE> = 20Q(E) <e,88>. Thus (2.10) holds for all fields

O

e L BE)

of characteristic zero and hence it holds generally. O

The number <€,Bg> is the discriminant of B; from (1.1) it is =gual to

det(b(ei,ej)).

(2.11) If X is a point, line or plane of PV, then E[x] = [B(K)O]

Proof. For 0 # a A B ¢ A2V it follows from (1.3) that e L (o A B} represents
the annihilateor of <a,B>. Hence if L is a line, BIiL] = [B(L)Oj. The

corresponding result for points and planes follows from this. 0

Let Prﬁﬁv) denote the group of all collineations and correlations of V.

The main result of this section is

*
(2.12) PIL (V) e PF0+(A2V) .



*
Proof. We have already seen that every element of PI'L (V) induces an element

of PFO+(A2V). The converse is an immediate consequence of (2.6). O

For use in later sections we describe the group PPL*(V) in greater detail.

For Te¢I'L(V), let T* be the semilinear transformation of V* defined by

T*m = T¢r_1, where 7 is the field automorphism associated with T. If we
identify a subspace of V with its annihilator in V*, then T and T* induce

the same collineation of PV. Similarly, if B : V » v represents a correlation,
then by (2.8) B* also represents this correlation. Now let T' be the transfor-
mation of Vv & V* which takes {(u,¢} to (Tu,T*m) and let R' be the transformation
which takes (u,p) to (B g,Bu). Let “L*(V) be the set of all these T' and B'.

(2.13) rL*(v) is a group.
Proof. To show that PL*(V) is closed under multiplication we must show that

(BT)* = B*T*, (T*B) = TB*, (B:Bz)w = BIB; and (ST)* = s*r*. These relations

follow easily from the definitions of T* and B”. L

If z(v) = { (A1) |A ¢ F}, then PPL*(V) o TL*(V)/Z(V). As a corollary to (2.13)

we have

-1
{2.14) If T ¢ TL{V) and B represents a correlation then B T*B corres—
ponds to the conjugate of T' by B'. 0

Let GL(V) be the subgroup of TL({V) consisting of the linear transformations,
let SL(V) be those of determinant .1 and let PGL(V) and PSL(V) be the
corresponding groups induced on PV. Similarly, let O+(A2V) be the group of
linear transformations T of A2V such that Q(Tf) = Q&) for all £ ¢ AZV'

let Q+(A2V) be the derived group of 0+(A2V) and let PO+(A2V) and PQ+(A2V)

be the corresponding projective groups. (The + indicates that the quadratic

form has maimum index). From (2.12) we have

(2.15} PSL (V) = PQ+(A2V) .

When F is the finite field GF(g)}) the groups are usually written PSL(4,q)
and PQ+(6'q) so that (2.15}) becomes

(2.16) PSL(4,q) mPQ_'_(G,Q) .




The group SL(V) is generated by transvections; that is, transformations

*
X+ x + g(x)y, where ¢ ¢ Vv and ®(y) = 0. Given such a transvection T we

choose the basis of V so that y = e, and ¢ = w, - Let £ = - e, A e2,
n = ey A e, and 4 = e, A e,. Then for p = A2r we have
(2:17) pin) =n - u

p(8) =0 + £(0,u)E for 6 ¢ <g>T

Thus p is a Siegel transformation of A2V. The homomorphism from I'L(V) to
F0+(A2V) takes SL(V) to ﬂ+(A2V) =~ SL(V})/{+X}, hence ﬂ+(A2V) is generated
by the Siegel transformations (2.17).

Finally, we remark that the results of this section do not depend on the
choice of basis for V since changlng the basis merely changes Q,f and [:f
by scalar factors. This justifies the calculations leading to (2.17).
However, the presence of these scalar factors means that the isomorphiém

(2.12) does not lift to an isomorphism between I'L*(V) and ro, (V).

. Null polarities

Suppose that b is a non-degenerate alternating form on V and choose the
basis so that e, e, and €,re5 are mutually orthogonal hyperbolic pairs.
Iet B : V ~+ V* be the isomorphism induced by b, that is B(u)v = b{u,v)},
and let E be the corresponding linear transformation of AZV as defined in
section 2. In this case the correlation induced on PV is said to be a

null polarity. An easy calculation using the definition of E shows that it

leaves ey A esr e, A €yt e, A e, and e2 A e3 fixed and intexchanges
e1 A e2 with e3 A e4. Therefore, if we set 8 = el A e2 - e3 A e, then
(3.1) R(E) = £ + £(£,0)0 for all £ c AV .

and 8 is the symmetry which leaves the hyperplane W = <e>* fixed point-

wise.



It follows from (2.11) that a line L of PV is totally isctropic if

and conly if [L] is a fixed point of 3. Hence

(3.2) The totally isotropic lines of PV are in one-to-~one

correspondence with the isotropic points of PW.

If P is a point of PV, then [P] n W is the (totally isotropic) line of
P(A2V) corresponding to the set of totally isotropic lines of PV throudh
P. By (2.6) (ii) [PL]is uniquely determined as the totally isotropic
plane # [P] of P(sz) which contains [P] n W. In particular, the
configuration of points and totally isotropic lines of PV is dual to

the configuration of points and totally isotropic lines of PW, These

configurations are known as generalized guadrangles since for each line

L and point P not on L there is a unique point on L which is joined by

a line to P (namely L n Pl).

If <£> is a non-isotropic point of P(sz), then any hyperbolic line
through <£> meets the Klein guadric in exactly two points. Thus £ can be

written in the form e, A e_. - e, A e, for some basis el,ez,e of V.

1 2 3 4
Since there is a unique alternating form on V for which e, e

3%
2 and e4,

are orthogonal hyperbolic pairs, it follows that there is a bijection

€3
between the null polarities of PV and the non-isotropic points of P(sz).

Now suppose that T is a semilinear transformation of V and let o be the
assoclated field automorphism. The group TSp(V) is defined to be the

set of all those semilinear transformations for which there is a scalar

% such that b(Tu,Tv) = Aob(u,v) for all u,v € V. Those linear transformations

of T'Sp(V) for which A = 1 form the symplectic group Sp(V). As usual let

PI'sp(Vv) and PSp(v) denote the corresponding projective groups.

Let TO{W) denote the group of semilinear transformations of W which preserve
the zeros of Q, let O(W) = T'O{W) n O+(A2V) and let Q (W) be the derived
group of O(W), Since B is the only element of 0+(A2V) which leaves W

fixed pointwise it follows that <B> x O(W) is the subgroup of O+(A2V)

which leaves W fixed. Finally, let PTQ(W), PO(W} and PR (W) denote the
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corresponding projective groups.

(3.2) PrSp(V) = PTO(W) .

Proof. If T ¢ I'Sp(V), then T permutes the totally isotropic lines of pv
among themselves and hence A2T fixes W, i.e. h2T € TO(W). Conversely,

it follows from (2.12) that each element of PIO(W) arises from a
collineation or correlation of PV but by multiplying by the cérrelation
B if necessary we may suppose it arises from a collineation and hence
from a semilinear transformation T such that A2T fixes W. If T~ = 0A1T_1,
where g is the field automorphism associated with T, then T*B and 8T
induce the same correlation of PV, hence they are equal up to a scalar
factor and therefore T e TSp(V). It follows from (2.12) that

PISp(V) =~ PTO(W). 0

(3.3) Sp(V) /{+I} e QW) .

Proof. We know that Sp(V)/{#I} is isomorphic to a normal subgroup of O{W)
with abelian factor group and since Sp(Vv)' = 8Sp(V}, the result follows
from the definition of G(W). |

Note that T ¢ SL(V) belongs to Sp(Vv) iff T*B = BT iff A2T commutes with

~

8. Hence Q(W) is the centralizer_of E in ﬂ+(A2v).

For the case of the finite field GF(g) the groups PSp(V) and PQ(W) are
written PSp(4,q) and PQ(5,q) respectively so that from (3.3) we have

(3.4) PSp(4,q) =~ PR(5,q) .
Since Sp(V) is generated by transvections it follows from the remarks

at the end of section 2 that Q(W) is generated by the corresponding

Siegel transformations.
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4. Unitary polarities of index 2

Throughout this section b will denote a non-degenerate skew symmetric
hermition form of index 2 which is semilinear in the first variable

and B8 : V » v* will denote the semilinear isomorphism such that R(u)v=Db(u,v).

The correlation indgced on PV is called a unitary polarity. (In the

case of a finite field this is the only type of unitary polarity possible.)
Let x - x be the associated field automorphism and let FO be its fixed
field. Then F = FO[G] and 0 satisfies the guadratic equation

82 - ab +b =0, where a =06 + 6 and b = 66 belong to Fo.

Choose the basis of V so that e,.e and e are mutually orthogonal

2 4'%3

hyperbolic pairs. Just as in section 3 g fixes ey A €y e2 A 64, & "M%y

and e, A e3 and interchanges e1 A e2, with ey A €y However in this

case B is a semilinear transformation and its set of fixed points is

the Fo—space WO with basis gl =e Ae, + e, A €, 52 = —ee1 he, - 6e3 A€y
53

= = A = = . Th l
e1 A e3, 54 e2 e4, 55 e1 A e4 and E6 e2 A e3 e value
of the quadratic form on

121 i“i 0]
is
(4.1) () = x2 - ax + b 2 x, +
: (e 1 1%p T PXy T Eyxy + XX .
Thus the restriction of Q to W0 is a non-degenerate quadratic form of
index 2.
(4.2) 1f B fixes the point <€> of P(A,V), then  fixes a non-zero

vector x{ for some x ¢ F.

vt and set x = 1 + y, then E fixes x£. If yv = -1,
0 but x # 0. ]

Proof. Suppose that EE

choose x so that x + x

From (2.11) a line L of PV is totally isotropic if and only if [L]
is fixed by E hence by (4.2) the totally isotropic lines of PV are in

one-to-one correspondence with the isotropic points of PWO. Let [L]O
denote the point of PWO representing the totally isotropic line L.
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The points [L]0 and [M]O of PW_, are orthogonal if and only if L and

M have a peoint in common. Hencg the totally isctropic points of PV
are in one-to-one correspondence with the totally isotropic lines of
PWO' As in section 3 the configuration of totally isotropic points
and lines of PV is dual so the configuration of totally isotropic
points and lines of PWO' and again these configufations'are general-

ized quadrangles.

The notation for groups assdciated with b and the restriction of Q

to WO follows the pattern established in the previous sections. Thus

Tu({v) denotes the group of semilinear transformations T with

associated field automorphism ¢ such that for some A, bL{Tu,Tv} = Ack{Tu,Tv)
for all u,v ¢ V. The subgroup of transformations for which o0 = 1 and

A =1 1is U(V) and the subgroup of U(V) of transformations of determinant
iis U+(V). The corresponding projective groups are PTU(V), PU(V) and
PU+(V) respectively. Similarly the group: ?O_(Wo), 0_(WO) and Q_(WO)

are defined in the same way as TO+(A2V), O+(A2V) and Q+(A2V) and the -

indicates that the form has index 2, The corresponding projective groups

are PFO_(WO), PO_(WOJ and PQ_(WO) respectively.

(4.3) PTU(V) = PTO_(W,) .

Proof. As in the proof of (3.2} T « I'U(V)} permutes the totally isotropic

lines of V among themselves and hence AZT fixes WO. To see that the

restriction of the isomorphism (2,12) takes PI'u(V) onto PPO_(WO) we

apply the argument used in (3.2}. 0
+

(4.4) U (W) /{£1} = Q_(W,)

Proof. The proof of (3.3) goes over without change. N

+
When F = GF(qz), we have F_. = GF(g) and the groups PU (V) and PQ_(WO)

0
are written PU+(4,q) and PQ_(6,q) respectively. From (4.4) we have

(4.5) PUT(4,q) ~ PR_(6,q) .
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. + . . . .
Since U (V) is generated by transvections it follows that ﬂ_(wo) is

generated by Siegel transformations.

We have already observed that the non-isotropic points of P(A2V)

correspond to the null polarities of PV and since WO is the set of

fixed elements of B we can now see that the non-isotropic points of

PWO correspeond to the null polarities of PV which commute with the

unitary polarity B.

. Line stabilizers

Instead of using the methods of sections 3 and 4 to investigate
orthogonal polarities of V we prefer to cobtain the three and four
dimensional orthogonal groups as line stabilizers in the five and
six dimensional orthogonal groups. This apprecach avoids having to

treat fields of even characteristic separatelyd

Suppose that L is a hyperbolic line of P(sz) and let <E> and <n> be
the isotropic points on L.

Choose the basis of V so that £ = el A e, and n = e3 A e4.

and N = <e3,e4>. The subgroup of PGL(V) which fixes both M and N is

PGL(M) % PGL(N). The image of this group in PFO+(A2V) fixes L (pointwise)

Let M = <e ,e_>
€ 1'%2

and therefore acts on U = LL. We observed in section 3 that the null
polarity E described there fixes U pointwise and interchanges £ with n,
It follows that B commutes with PGL{M) x PGL(N). However, if v is a
polarity for which M and N are totally isotropic lines, then v fixes <E>
and <n> and acts on U,

Suppose that T is a linear transformation which acts on M and fixes
N pointwise; i.e. T represents an element of PGL(M). Then from 2.14

the conijugate of T by v is u_lT*v. If x ¢ M, then vx ¢ M0 hence T*vx = VX
and therefore vle*v fixes M pointwise. This means that conjugation by
v interchanges PGL({M) with PGL(N}.

The restriction of Q to U is a quadratic form of index 2; let PPO+(U)

denote the corresponding orthegonal group. An element of PPO+(U) can be
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regarded as an element of PFO+(A2V) which fixes L pointwise. It follows

from the discussion above and the isomorphism (2.12) that

(5.1) {PGL{M) x PGL(N))Aut (F)<v> o~ PI‘O+ {u) .
For 1* = GF{q}, we have
(5.2) {FGL(2,q) x PGL(2,q))Aut (GF(q))<v> Pl"0+(4.q) .

As usual, let Q+(U) denote the derived group of the subgroup 0+(V)

of O+(A2V) which acts on U and fixes L pointwise. From the isomorphism
SL(V)/{iI}’==9+(A2V) of section 2 we see that ﬂ+(U) is the central
product (SL{M) x SL(N))}/{+I}. Hence for F = GF(g) we have

(5.3) (SL(2,q) x SL(2,q))/{#1} = (4,q)

and therefore

{(5.4) PSL(2,q) x PSL(2,q) = PQ+(4,q)

Next let us consider a line stabilizer in the group PI'O(W) studied in

section 3. This time it is convenient to take L = <¢,n>, where £ = e, A e

1 3
and n = e2 A e4. Then M = <e1,33> and N = <e2,e4> are totally isotropic
. . - . 1
with respect to the null polarity B studied in section 3, Let U, = L n W.

1
The subgroup of PTO(W}) which fixes L pointwise is the orthogconal group

PFO(UIJ and the subgroup of PI'Sp(V) to which it corresponds via the
isomorphism (3.2) is the centralizex of B inf{PGL(M) x PGL(N))Aut(F) .

{(5.5) PTL (M) o PI‘O(Ul) .

Proof. The centralizer of B in PGL(M) X PGL(N) consists of the elements

_1*
(T,8 "T B), where T ¢ PGL{M) and it ig therefore isomorphic to FGL(M}.

When ¥ = GF{g) we have
(5.0) PIL(2,q) e PlO(d,q) .
Similarly,

(5.7) PSL{2,q) = PQ(3,q) .
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Finally, we consider a line stabilizer in the group PFU(WO) of

section 4. Now B denotes the unitary polarity of that section and L,M
and N retain the same meaning as above. Let UO = Ll n WO and let
PTO_(UU) be the corresponding orthogonal group; note that the restriction
ol O Lo U0 is a quadratic form of index 1. In this case the proof of

(5.5) yields

(5.8) PIL(M) = PI‘O__(UO) .

2
When F = GF(gq ) we have

{5.9) Pl"L(2,q2) =~ PTO_(4,q) .
Similarly,
(5.10) PSL(2,q%) =~ PQ_(4.q) .

0dd dimensional ortheogonal groups over GF(2a)

For this section only let W be a vector space of dimension 2n + 1 over
GF(2a) and let Q : W - GF(Za) be a quadratic form with polar form

f{x,y) = Q(x +y) - @(x}) -~ Qly). We shall suppose that Q is non-degenerate;
that is, Q does not vanish on the non-zero vectors of the radical of W
with respect to f£. This assumption forces rad W to have dimension 1 and

we may write W = rad W L V', where rad W = <e_> and Q(eo) = 1.

0
Let O(W) be the group of linear transformations T of W such that

O(Tw) = Q(w) for all w € W. Then for T ¢ O(W) and w € W we may write

= .l ' i =
Tw Tow + le, where Tow € rad W and le € V'. In particular, Teo e
and for v,v' ¢ V' we have £(T,v,T,v'}) = f(v,v') and therefore T, belongs

i 1 1 1
to the group Sp({V'}) of linear transformations of V' which preserve the
alternating form f. Conversely, if T, ¢ Sp{v') and v ¢ V', let A(v) be

2 .
the (unique) element of GF(2a) such that A{v) = Q(v) + Q(T,v). Define

T : W>Wby Te, = e, and Tv = T1v + A(v)e

0 o for v ¢ V. Then T ¢ Q(W}.

ol'
This proves
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(6.1) O(W) = sp(v') ,
or in another notation
(6.2) o(2n + 1,2%) =~ sp(2n,2?) .

Note that the projection from W onto V' induces a bijection between the

zeros of Q and the elements of V'.

The twisted polarity

. . , a .
Now consider a vector space V of dimension 4 over GF(2%) with a non-
degenerate alternating form b as in section 3. The considerations of

section & apply to the subspace W of AZV with basis e, A e, + e3 A eq,

A A A A = < A p
e1 e3, e2 e4, e1 e4 and e2 e3. We have rad W e1 e2 + e3 A e4»

and we may suppose that V' = <e1 A e3, e, A €4t & A ey €, A ey>. Let

T : W V be the linear transformation defined by g(rad W) = O,

n(el A e3) = el, ﬂ(e2 )

Then 7 induces an isometry between V' and V.

A e4) = e, mie, A e4) = e, and n(e2 A e3) = e .

4

If I = <u,v> is a totally isotropic line of PV, then <u A v» is an isotropic
point of W and §(L) = <w{u A v)> is a point of PV. The results of the
previous sections show that 8 is a bijection between the totally isotropic
lines and the points of PV. If P is a point of PV, then the line [P] n W
projects to a totally isotropic line 6(P) of PV and if P is on L, then

8(L) is on 8(P). (Notice that {P] n W and [»>] n W coincide so that in W

we have lost the distinction between points and planes of PV.)

If T ¢ Sp{V), then A2T € O{W) and by (6.1} A2T corresponds to an element

in PSp(V}, then

1

T1 € Sp(V). If T and 51 dencte the images of T and T
by construction 51 = 656_1. Hence ¢ induces an outer automorphism of

PSp(V}. 4 4 4
Let u = Z Xe b6 v-= X y,e, and w = Z z,e. and suppose that
. ii ii ii
i=1 i=l1 i=1
b(u,v) =b(u,w) = 0. We set £ =u Av, n=uAwW, v' = 7(E) and w' = m(n}.

A straightforward calculation shows that &(<u>) = <v',w'> and
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(7.1) v' Aw' =

2
+ 2, Ae4) + X e, A e, +

l?(v,w)[(xlx +x x4)(e1/\e2 &y 181 3

2 3

Let T be the autcomorphism of GF(2a) such that t(x) = x2 for all x ¢ GF(2a),
then from (7.1) and the definition of § we have

{7.2) 62(P) = (P} for all points P.

If a is odd, then GF(Za) has an automorphism o such that 02 = 7. In this
0_16(P) and p(L) = G—IB(L). for each point P ahd line
L of PV. Then p2 = ] and P, is on p(P2) if and only if P

1
We call p the twisted polarity of PV.

cage wa set p (P}

is on p(Pl).

2

The Suzuki group Sz(2a) is defined to be the centralizer of p in PSp(4,2a).

The Suzuki groups

We continue the investigations of section 7 under the assumption that V
has dimension 4 over GF(g), where g = 2% and a is odd. And we shall now
write field automorphisms as exponents. Let 0 = {P ¢ PV|P € p(P)}, then
<u> ¢ O if and only if u’ A ¥v' A w' = 2 and by (7.1) this is the case

if and only if

a 2 2 g a 1+0
(8.1) xlx2 + x3x2 + xlx_)x4 Xy 0
g 2 2.0 g l4g
+ + + =
xlx4 xlx2 x1x2x3 x3 4 0
2+g 2.qa 1+aq g _
x3 + xlx4 + x1 x2 + x1x3x4 =0
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The plane <e2>l has equation Xy o= 0 so from (8.1) we see that <e2>L no = <@,
Let « denote the point <e2> and let A be the affine space cbtained from PV
by deleting mL. As affine coordinates we take x = x3/x1, y = x4/x1 and

z = xz/xl. Then (8.1) is equivalent to the single condition

2+a

(8.2) yU + z + x + Xy o .

fl

It follows from (8.2) that IOI 1+ qz.

In order to describe the group Sz(gq) we shall represent the elements of
PSp(4,q) by matrices with respect to the basis ei,e3,e4,e2. It is a straight-
forward calculation to check that the following matrices induce collineations

which belong to PSp(4.,q).

1 0 0
a 1 0 0
(8.3) T(ab) = | K ) 0
ab+a2+°+b0 b+aL+U a 1
1 0 0 0
0 k O 0
(8.4) nik) = 0 0 k1+U 5
0 0 o0 k20

These collineations fix = and commute with p and we have

(8.5) T(a,b)T(c,d) = T(a +c, b +4d + a’c)

(8.6) n k) T(a,b)nik) L = tika, k%) .

2

Thus the group T = {t(a,b)|a,b € GF(q)} has order q“ and is normalized

by the group E = {n(k)[k € GF(q)x} of order g - 1. The group T acts
ragularly on the points of Q in A since 1(a,b) takes the point with

+ o
mwﬁmwsmmmﬁtomeWMtMmcmwmm%(LM®+£G+b)E
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The matrix

—-

{8.7

£

]
- O o O
o = O O

o O ~ O
o O O

induces a collineation which commutes with p and interchanges « and (0,0,0}t.

Hence Sz (g) acts doubly transitively on O.

Let ¢ be an element of Sz (q) which fixes <e 6> and <e_>. Then ¢ can be re-

1 2
presented by a matrix

1 0 0 ]
Q a b 0
(8.8) 0 i o0
0 0 e

The image of (O,y,yc)t € O under ¢ is (by, dy, eyd)t and since ¢

preserves 0, (8.2) implies
+g 2+
(8.9) bdy2 + b2 0y2 o+ (dd + e)ycr =0 for all y ¢ GF(qg) .
In order to exploit this equation we use the theorem of Artin that distinct
endomorphisms of a field are linearly independent.

Proof. If Xy#eoetXy are endomorphisms of F 2and a toeat ax; < 0 with

X
1*1
a, # 0 and 1 as small as possible, then four any x we have alxl(x)x1 +...+aixi(x)xi-=0,

- I - =
hence (a,x, (x) - a;x, (x))x, + (@, 1%y (¥} —a, _,x; 4%y, =0, 2
contradiction.

*o and y -+ yG are distinct, hence

' 2 2

If q # 2, the endomorphisms vy >y » ¥ ~ ¥
2+

b=0and e = do. Now consider the image of (x,0,x c) ¢ O under ¢ to

obtain

(8.10} ccxU + (dc + a2+°)x2+c + acx2 =0 .

240

It follows that ¢ = 0 and dc = a ¢ hence ¢ = nfa}).
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If g = 2 it is not difficult to see that the subgroup of PSp(4,2) which

presexrves Q is the symmetric group S5 but from (7.1) the subgroup which

commutes with p has order 20. In all cases we see that Sz({y) = T.H and
o«

hence

(8.11) |sz(q) | = (q2 + 1)q2 (@ - 1)

Since the subgroup T is clearly in the derived group of Sz(g), ¢ # 2, and
since Sz(q) 1s generated by the conjugates of T it follows from Iwasawa's
lemma that Sz(q) is simple when g # 2. Notice that the order of Sz(g) is
never divisible by 3. It is a deep theorem of Thompson thut these are the
only finite simple groups with this property.

If P ¢ O, then P~ n O = P, since this is true for P = = and Sz{(q) acts
transitively on O. The lines of A which pass through = are the intersections
of planes x = a and y = b, hence they meet O in just one point of A,

A plane of A which contains <« has an equation“ax + by = ¢ so from (8.2}

each plane through « {other than ch') meets O in ¢ + 1 points, Thus every
plane which contains at least 2 points of O meets O in g + 1 points. Call
these sets of ¢ + 1 peints the blocks of 0. Since any 3 points of O lie in

a unique plane we have a 3—(q2 +1, g+ 1, 1) deslgn on 0. It follows that
there are q(q2 + 1) planes which meet O in g + 1 points and these together
with the q2 + 1 tangent planes constitute all the planes of the space. If
P,Q ¢ 0 and p(P),p(Q) belong to a common plane H, then HL =p(P) n p(Q)

and P + Q = p(Hl) is totally isotropic, whence Q € Pl, a contradiction. Thus
if 9 ¢ Sz(q) fixes a plane through p (P), then 9 (P} = P and therefore the
stabilizer of such a plane has order g{g ~ 1). It follows that Sz{q) is
transitive on the blocks of the 3—(q2 + 1, g+ 1, 1) design.

The isomorphisms A, o GL(4,2) and £_ = Spi{4,2}

8

6

Let X be a set of 2m + 2 elements and let U be the set of partitions (xl,xz)

of X such that lx1| and |x2| are even. We make U into a vector space of
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dimension 2m over GF(2) by defining the sum of (x1'x2) and (xi,xé) to be the
partition (x1 7t xi, x2 A xé), where # denctes symmetric difference.

If x = (x1,X2) is a partition we set Q(x) = %|X1| (mod 2), then Q is a
non-degenerate quadratic form on U and Q is preserved by the symmetric

group of X. In particular, if m = 3, then the index of 0 is 3 and we

have Ea < O+(6,2). By a result of section 2, 0+(6,2) is isomorphic to GL(4,2)
extended by a correlationf Since |28[ = 2|GL(4,2)|, we have L o O+(6,2)

and Aa et GL(4,2). _

A transposition in 28 acts as the identity on a subspace of dimension 5 in U,

8

henca it corresponds to a symplectic polarity of GL(4,2). It follows that
26 = Sp(4,2). The twisted polarity of section 7 induces an outer automorphism

L.
of 6
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Group orders

GI.'OUE

PSL(n,q)

PU" (n,q)

PSp{2n,q)

PR{2n + 1,q)

PQE(Zn,q)

Sz (q)

Order
km!
n
{,l n .
% q 2 1 {ql - 1)
i=2
. () n . ,
£3% 1 - -0
i=2
2 n .
2
%qn H{ql-I)
i=1
2 n
23
é-qn mgt -1
i=3
n-1
- 2
AT I
i=1

2
@ + g’ - 1)

1}

1,

(n,g - 1)

n,g + 1)

(2;q -1

?yq - 1)

[

(4rqn - E)




Isomorghisms

1) PSL(2,q) o« PU' (2,q) ~ PSp(2,q) = PR(3,q) o

‘2)
3)
4)
5)
6)
7
8)
9)

10)

11

12)

13)

PQ(5,q) « PSp{4,q)

’

Pﬂ+(4,q) e PSL{2,q) x PSL(2,q) ,

PQ_(4,q)
PQ, (6,q)

PQ_(G;q)

PQ(2n + 1,

PSL(2,3)
PSL(2,4)
PSL{2,7)
PSL(2,9)
PSL{4,2)

put (4,2)

PSL(Z,qz) '

PSL{4,q)

!

PU+(4fq) '

2?) = Psp(2n,2%) ,

A4I

PSL{2,5) o A

PSL(3,2)

1&6}

AB i

PSp(4,3)

Order coincidences

14) |psL(3,4)| = |psL(4,2)| = {ag|

PSL(3,4) ¢ PSL(4,2) = A

’

i

5

8

15) If q is odd, 2n 2 & then,

|psp(2n,q)| = |P2(2n + 1,q)| but 2Sp(2n,q) % PQ(2n - 1,q) .

»
r

.
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20160 ,

4
(7S
th

[¥5]

order

order

order

oraer

order

order



ALl groups 1)

a) PSL(2,2) = PUT(2,2) ~ PSp(2,2) o PR(3,2) = %

8

b) PSL(2,3) = PUT(2,3) o~ PSp(2,3) = PQ(3,3) ~ A

- III -

.«s 6) are simple with the following exceptions:

3

4 L]
2

c) PU+(3,2) of order 72 = 23.3 . solvable.

d) PSp(4,2) =~ T

e) Pﬂ+(4,q).

6 = PQ(5,2) of order 720.

Ll Tl e
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