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Chapter 1 Preface

This is a translation of the lecture notes of Jan de Graaf about Tensor Calculation and
Differential Geometry. Originally the mathematical student W.A. van den Broek has
written these lecture notes in 1995. During the years, several appendices have been
added and all kind of typographical corrections have been done. Chapter 1 is rewritten
by Jan de Graaf.
To make this translation is not asked to me. I hope that this will be, also for me, a
good lesson in the Tensor Calculation and Differential Geometry. If you want to make
comments, let me here, see the front page of this translation,

René van Hassel (started: April 2009)

In June 2010, the Mathematical Faculty asked me to translate the lecture notes of Jan de
Graaf.
Pieces of text characterised by "RRvH:" are additions made by myself.
The text is typed in ConTeXt, a variant of TeX, see context.

http://wiki.contextgarden.net/Main_Page
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Chapter 2 Multilinear Algebra
Section 2.1 Vector Spaces and Bases

Starting Point(s):

• A n-dimensional Vector Space V over R.

Comment(s): 2.1.1

• For every basis {ei} of V and for every vector x ∈ V there exists an unique
ordered set of real numbers {xi

} such that x = xiei.

Definition 2.1.1 The numbers {xi
} are called the contravariant components of the

vector xwith respect tot the basis {ei}. �

Convention(s): 2.1.1

• Contravariant components are organized in a n × 1-matrix, also known as a
columnvector. The columnvector belonging to the contravariant components
xi is notated as X, so

X =


x1

...
xn

 = (x1, · · · , xn)T.

• The Vector Space of the real columnvectors of length n is notated by Rn.

Definition 2.1.2 The amount of n columnvectors Ei, defined by

Ei = (0, · · · , 0, 1, 0, · · · , 0)T,

where there becomes a number 1 on the i-th position, is a basis ofRn. This basis is
called the standard basis of Rn. �
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Notice(s): 2.1.1

• X = xiEi.
• To every basis {ei} of V can be defined a bijective linear transformation

E : V → Rn by Ex = X. Particularly holds that Eei = Ei. A bijective lin-
ear transformation is also called a isomorphism. By choosing a basis {ei} of
V and by defining the correspondent isomorphism E, the Vector Space V is
"mapped". With the help of Rn, V is provided with a "web of coordinates".

Comment(s): 2.1.2

• For every pair of bases {ei} and {ei′} of V, there exist an unique pair of ordered
real numbers Ai

i′ and Ai′
i such that ei = Ai′

i ei′ and ei′ = Ai
i′ei.

Convention(s): 2.1.2

• The numbers Ai
i′ are organized in a n × n-matrix, which is notated by A,. So

A, = [Ai
i′] with i the row index and i′ the column index. The matrix A, is the

change-of-coordinates matrix from the basis {ei} to the basis {ei′}.
• The numbers Ai′

i are also organized in a n × n-matrix, which is notated by A,.
So A′ = [Ai′

i ] with i′ the row index and i the column index. The matrix A′ is
the change-of-coordinates matrix from the basis {ei′} to the basis {ei}.

• The contravariant components of the vector xwith respect to the basis {ei′} are
notated by xi′ and the belonging columnvector by X′ .
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Notice(s): 2.1.2

• On the one handholds ei = Ai′
i ei′ = Ai′

i A j
i′ e j and on the other hand ei = δi

j e j,

from what follows that Ai′
i A j

i′ = δi
j. On the same manner is to deduce that

Ai
i′A

j′
i = δi′

j′ . The δ
i
j and δ

i′
j′ are the Kronecker delta’s. Construct with them the

identity matrices I = [δi
j] and I′, = [δi′

j′], then holds A′A, = I′, and A,A
′

= I.
Evidently is that (A,)−1 = A′ and (A′)−1 = A,.

• Carefulness is needed by the conversion of an index notation to a matrix nota-
tion. In an index notation the order does not play any rule, on the other hand
in a matrix notation is the order of crucial importance.

• For some vector x ∈ V holds on one hand x = xi ei = xi Ai′
i ei′ and on the

other hand x = xi′ ei′ , from which follows that xi′ = xi Ai′
i . This expresses

the relationship between the contravariant components of a vector x with re-
spect to the basis {ei} and the contravariant components with respect to the
basis {ei′}. Analoguous is seen that xi = xi′ Ai

i′ . In the matrix notation this
correspondence is written as X = A, X

′ and X′ = A′ X.
• Putting the expression xi′ = xi Ai′

i and ei′ = Ai
i, ei side by side, then is

seen that the coordinates xi "transform" with the inverse Ai′
i of the change-

of-coordinates matrix Ai
i′ . That is the reason of the strange 19th century term

contravariant components.
• Out of the relation xi′ = xi Ai′

i follows that ∂xi′

∂xi = Ai′
i .

Notation(s):

• The basisvector ei is also written as ∂
∂xi and the basisvector ei′ as ∂

∂xi′ .
At this stage this is pure formal and there is not attached any special meaning
to it. Look to the formal similarity with the chain rule. If the function f is
enough differentiable then

∂ f
∂xi =

∂xi′

∂xi
∂ f
∂xi′ = Ai′

i
∂ f
∂xi′ ,

so ∂
∂xi = Ai′

i
∂
∂xi′ , which corresponds nicely with ei = Ai′

i ei′ .
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Example(s): 2.1.1 Let S = {e1 = (1, 0), e2 = (0, 1)} be the standard basis of R2

and let T = {e1′ = 1
√

5
(1, −2)T, e2′ = 1

√
5
(2, 1)T

} be an orthonormal basis of R2.
The coordinates of e1′ and e2′ are given with respect to the standard basis S.
The matrix

A, =
(
e1′ e2′

)
=

1
√

5

(
1 2
−2 1

)
,

A,((e1′)T) = (e1′)S and A,((e2′)T) = (e2′)S.
The matrix A, is chosen orthogonal, such that A′ = (A,)−1 = (A,)T and

xT = A
′

xS =
1
√

5

(
1 −2
2 1

)  8
√

5
−1
√

5

 =

(
2
3

)
,

the result is that

x =
8
√

5
e1 +

−1
√

5
e2 = 2e1′ + 3e2′ .

�

Section 2.2 The Dual Space. The concept dual basis

Starting Point(s):

• A n-dimensional Vector Space V over R.

Definition 2.2.1 A linear function f̂ on V is a transformation of V to R, which
satisfies the following propertie

f̂(αx + βy) = α f̂(x) + β f̂(y),

for all x,y ∈ V and every α, β ∈ R. �
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Definition 2.2.2 The Dual Space V∗ belonging to the Vector Space V is the set of
all linear functions on V, equipt with the addition and the scalar multiplication.
For every pair linear functions f̂ and ĝ on V, the function ( f̂ + ĝ ) is defined by
( f̂ + ĝ )(x) = f̂(x) + ĝ(x). For every linear function f̂ and every real number α,
the linear function (α f̂) is defined by (α f̂)(x) = α ( f̂(x)). It is easy to control that
V∗ is a Vector Space. The linear functions f̂ ∈ V∗ are called covectors or covariant
1-tensors. �

Definition 2.2.3 To every basis {ei} of V and for every covector f̂ ∈ V∗ is defined
an ordered set of real numbers { fi} by fi = f̂ (ei). These numbers fi are called the
covariant components of the covector f̂ with respect to the basis {ei}. �

Convention(s): 2.2.1

• The covariant components of a covector are organized in a 1 × n-matrix, also
known as a rowvector. The rowvector belonging to the covariant components
fi is notated as F̂, so

F̂ = ( f1, f2, · · · , fn)

• The Vector Space of the real rowvectors of length n is notated by Rn.

Definition 2.2.4 The amount of n rowvectors Ê
i
, defined by

Ê
i

= (0, · · · , 0, 1, 0, · · · , 0),

where there becomes a number 1 on the i-th position, is a basis ofRn. This basis is
called the standard basis of Rn. �
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Notice(s): 2.2.1

• F̂ = fiÊ
i
.

• f̂(x) = F̂ X, where F̂ represents the rowvector of the covariant components of
the covector f̂.

• To every basis {ei} of V belong n linear functions ê k, defined by
ê k(x) = xk = (Ek)T Ex. Keep in mind, that every ê k most of the time is deter-
mined by the entire basis {ei}.

Lemma 2.2.1 The collection { ê i
} forms a basis of V∗. �

Proof Let ĝ ∈ V∗. For every x ∈ V holds that

ĝ(x) = ĝ(xiei) = xîg(ei) = gixi = gi( ê i(x)) = (gîe
i)(x),

so ĝ = gîe
i. The Dual Space V∗ is spanned by the collection { ê i

}. The only thing to
prove is that { ê i

} are linear independent. Assume that {αi} is a collection of numbers
such that αîe

i = 0. For every j holds that αîe
i(e j) = αi δi

j = α j = 0. Hereby is proved

that { ê i
} is a basis of V∗. �

Consequence(s):

• The Dual Space V∗ of V is, just as V itself, n-dimensional.

Definition 2.2.5 The basis { ê i
} is called the to {e i} belonging dual basis of V∗. �

Notice(s): 2.2.2

• To every choice of a basis {e i} in V there exists a bijection E : V → Rn, see
Notice(s) 2.1.1. A choice of a basis in V leads to a dual basis in V∗. Define a
linear transformation E∗ : RnV → V∗ by E∗Ê

i
= e i. This linear transformation

is bijective. There holds that E∗̂F = f̂ and also that

f̂(x) = E∗̂F(x) = F̂(Ex) = F̂X
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Lemma 2.2.2 Let {e i} and {e i′} be bases of V and consider their belonging dual
bases { ê i

} and { ê i′
}.

• The transition between the basis { ê i
} and the basis { ê i′

} is given by the known
matrices A′ and A,, see Comment(s) 2.1.2. It goes on the following way:

{ ê i} = Ai
i′{ ê i′} and { ê i′} = Ai′

i { ê i}.

�

Proof The transition matrices between the bases { ê i
} and { ê i′

} are notated by [Bi′
i ] and

[Bi
i′]. On one side holds ê i′(e j) = δi

j and on the other hand holds

ê i′(e j) = (Bi
i′ ê

i′)(A j′
j e j′) = Bi

i′A
j′
j δ

i′
j′ = Bi

i′A
i′
j ,

such that Bi
i′A

i′
j = δi

j. It is obvious that Bi
i′ = Ai

i′ . �

Notice(s): 2.2.3

• Changing of a basis means that the components of ŷ transform as follows

ŷ = yi′ ê
i′ = yi′Ai′

i ê
i = (Ai′

i yi′) ê i = yi ê
i = yiAi

j′ ê
j′ = yiAi

j′ ê
i′ .

In matrix notation

Ŷ, = ŶA, Ŷ = Ŷ,A
′

( = Ŷ,(A,)−1)

• Putting the expression yi′ = Ai
i′yi and ei′ = Ai

i, ei side by side, then is seen
that the coordinates yi "transform" just as the basis vectors. That is the reason
of the strange 19th century term covariant components.

Notation(s):

• The basisvector ê i is also written as d xi and the dual basisvector ê i′ as d xi′ .
At this stage this is pure formal and there is not attached any special meaning
to it. Sometimes is spoken about "infinitesimal growing", look to the formal
similarity

d xi′ =
∂xi′

∂xi d xi = Ai′
i d xi′ .

This corresponds nicely with ê i′ = Ai′
i ê

i.
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Section 2.3 The Kronecker tensor

Starting Point(s):

• A n-dimensional Vector Space V over R and it’s Dual Space V∗.

Notation(s):

• The covector f̂ : x 7−→ f̂(x) will hence’forth be written as f̂ : x 7−→< f̂, x >.
• Sometimes is written f̂ =< f̂, · >. The "argument" x leaves "blanc".

Definition 2.3.1 The function of 2 vectorvariables < ·, · >: V∗ × V → R is called
the Kronecker tensor. �

Notice(s): 2.3.1

• Covectors can only be filled in at the first entrance of < ·, · >, so elements out
of V∗. At the second entrance there can be filled in vectors, so elements out
of V. The Kronecker tensor is not an "inner product", because every entrance
can only receive only its own type of vector.

• The Kronecker tensor is a linear functions in every separate variable. That
means that

∀û, v̂ ∈ V∗ ∀z ∈ V ∀α, β ∈ R : < αû + β̂v, z >= α < û, z > +β < v̂, z >, en

∀û ∈ V∗ ∀x,y ∈ V ∀γ, δ ∈ R : < û, γx + δy >= γ < û, x > +δ < û,y > .

• The pairing between the basisvectors and the dual basisvectors provides:

< ê i, e j >= δi
j =

{ 1 if i = j,
0 if i 6= j, ,

the famous "Kronecker delta".
• To every fixed chosed a ∈ V, there can be looked to the linear function û :

x 7−→< û, a > on V∗! This linear function belongs to the dual of the Dual
Space of V, notation: (V∗)∗ = V∗∗. A co-covector, so to speak. The following
lemma shows that in the finite dimensional case, V∗∗ can be indentified with
V, without "introducing extra structures". The proof needs some skills with
the abstract linear algebra.
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Lemma 2.3.1 Bidual Space

Let̂̂f : V∗ → R be a linear function. Then there exists an unique vector, say a ∈ V,

such that for all û ∈ V∗ holds that: ̂̂f( û ) =< û, a >.
( Without any risk there can be posed that V∗∗ = V). �

Proof Choose a vector a ∈ V. Define the "evaluation function" ̂̂δa : V∗ → R bŷ̂
δa( û ) =< û, a > .

Look at the linear transformation J : V → V∗∗, defined by Jx =
̂̂
δx. The linear

transformation J is injective. If (Jx)( û ) =< û, x >= 0 for all û ∈ V∗, then x has
to be 0. Take for û successively the elements of a "dual basis". Because furthermore
dimV∗∗ = dimV∗ = dimV = n < ∞, J has also to be surjective. This last is justified
by the dimension theorem. The bijection J : V → V∗∗ "identifies" V∗∗ and V without
making extra assumptions. �

Comment(s): 2.3.1

• If the vector x ∈ V is meant as a linear function on V∗, there is written
x =< ·, x >. A vector perceived as linear function is called a
contravariant 1-tensor.

• To emphasize that the covector ŷ is a linear function, it is written as
ŷ =< ŷ, · >. Such a covector is called a covariant 1-tensor.

• The question announces if V and V∗ can be identified. They have the same di-
mension. The answer will be that this can not be done without extra assump-
tions. Later on will be showed, that the choice of an inner product will deter-
mine how V and V∗ are identified to each other.

Section 2.4 Linear Transformations. Index-gymnastics

Starting Point(s):

• A n-dimensional Vector Space V over R and it’s Dual Space V∗.
• A linear transformation R from V to V.
• A linear transformation P from V∗ to V∗.
• A linear transformation G from V to V∗.
• A linear transformationH from V∗ to V.
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Notation(s):

• Let {ei} and {ei′} be bases of V, then is written

Rei = R j
ie j ,

Rei′ = R j′
i′ e j′ . (2.1)

This means that the contravariant components of the vector Rei with respect
to the basis {e j} are notated by R j

i and the contravariant components of the
vector Rei′ with respect to the basis {e j′} are notated by R j′

i′ .
• These two unique labeled collection of numbers are organised in n × n-

matrices, notated by respectively R and R
′

, . So R = [R j
i ] and R

′

, = [R j′
i′ ].

Hereby are j and j′ the rowindices and i and i′ are the columnindices.

Notice(s): 2.4.1

• With the help of the transisition matrices A, and A′ there can be made a link
between the matrices R and R

′

, . There holds namely

Rei′ = R(Ai
i′ei) = Ai

i′Rei = Ai
i′R

j
ie j = Ai

i′R
j
iA

j′
j e j′ .

Compare this relation with ( 2.1) and it is easily seen that R j′
i′ = Ai

i′R
j
iA

j′
j . In

matrix notation, this relation is written as R′, = A′RA,. Also is to deduce that
R j

i = Ai′
i R j′

i′A
j
j′ , which in matrix notation is written as R = A,R

′

,A
′ .

• The relations between thematrices, which represent the linear transformation
Rwith respect to the bases {ei} and {ei′}, are now easily to deduce. There holds
namely

R
′

, = (A,)−1RA, and R = (A
′

)−1R
′

,A
′

.

The other linear types of linear transformations can also be treated on almost the same
way. The results are collected in figure 2.1.
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Comment(s): 2.4.1 Comments to figure 2.1.

• ∀x ∈ V ∀ŷ ∈ V∗ :< ŷ,Rx >=< P ŷ, x > holds exactly if P = R, so if Pi
j = Ri

j
holds exactly.

• ∀x ∈ V ∀z ∈ V :< Gy, z >=< Gz, x > holds exactly if GT = G, so if g ji = gi j
holds exactly. In such a case the linear transformation G : V → V∗ is called
symmetric.

• Some of the linear transformations in the table can be composed by other lin-
ear transformations out of the table. If R = H ◦ G then is obvious
Rk

jx
jek = Rx = (H ◦ G)x = hklg jlx jek. In matrix notation: RX = H(XTG)T =

HGTX.
• If P = G ◦H then is obvious Pk

j yk̂e
j = Py = G ◦H ŷ = hklgl jyk̂e

j. In matrix

notation: ŶP = (HŶT)TG = ŶHTG.
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Coordinate free notation Indexnotation = Componentnotation Matrixnotation

No basis used Basis dependent Basis dependent
Order is fixed Order is of no importance Order is fixed

Space

x xi′ xi”, with x = xiei = xi′ei′ , etc.
x ∈ V xi =< ê i, x > xi′ =< ê i′ , x > X X′

xi′ = Ai′
i xi xi” = Ai”

i xi, etc. X′ = A′X, etc.

y yi′ yi”, with ŷ = yîe
i = yi′̂e

i′ , etc.
ŷ ∈ V∗ yi =< ŷ, ei > yi′ =< ŷ, ei′ > Ŷ Ŷ,

yi′ = Ai
i′yi yi” = Ai

i”yi, etc. Ŷ = Ŷ,A
′ etc.

< ŷ, x >∈ R yixi = yi′xi′
∈ R ŶX = Ŷ,X

′

∈ R

R

Re j = Ri
jei Re j′ = Ri′

j′ei′

R : V → V Ri
j =< ê i,Re j > R = [Ri

j] , j is column index

Ri′
j′ =< ê i′ ,Re j′ >= Ai′

i A j
j′x

j R = A,R
′

,A
′

Rx ∈ V Ri
jx

j =< ê i,Rx > column(Ri
jx

j) = RX
Ri′

j′x
j′ =< ê i′ ,Rx >= Ai′

i R j
jx

j column(Ri′
j′x

j) = R′,X
′

< ŷ,Rx >∈ R yiRi
jx

j = Ri′
j′x

j′yi′ ∈ R ŶRX = Ŷ,R
′

,X
′

∈ R

P

P ê i = Pi
ĵe

j
P ê i′ = Pi′

j′̂e
j′

P : V∗ → V∗ Pi
j =< P ê i, e j > P = [Pi

j] , j is column index

Pi′
j′ =< P ê i′ , e j′ >= Ai′

i A j
j′P

i
j P′, = A′PA,

P ŷ ∈ V∗ P j
i y j =< P ŷ, êi > row(P j

i y j) = ŶP
P j′

i′ y j′ =< P ŷ, êi′ >= Ai
i′P

j
i y j row(P j′

i′ y j′) = Ŷ,P
′

, = ŶPA

< P ŷ, x >∈ R y jP
j
ix

i = P j′
i′ y j′xi′

∈ R ŶPX = Ŷ,P
′

,X
′

∈ R

G

Gei = gi ĵe
j

Gei′ = gi′ j′̂e
j′

G : V → V∗ gi j =< Gei, e j > G = [gi j] , j is column index
gi′ j′ =< Gei′ , e j′ >= Ai

i′A
j
j′gi j G,, = [gi′ j′] = (A,)TGA,

gi jxi =< Gx, e j > row(gi jxi) = XTG
Gx ∈ V∗ gi′ j′xi′ =< Gx, e j′ >= A j

j′gi jxi row(gi′ j′xi′) = (X′)TG,,
= (X′)T(A,)TGA, = XTGA,

< Gx, z >∈ R gi jxiz j = gi′ j′xi′z j′
∈ R XTGZ = (X′)TG,,Z

′

∈ R

H

H ê k = hklel H ê k′ = hk′l′el′

H : V∗ → V hkl =< ê k,H ê l > H = [hkl] , l is column index
hk′l′ =< ê k′ ,H ê l′ >= Ak′

k Al′
l hkl H′′ = [hk′l′] = A′H(A′)T

hklyl =< ê k,H ŷ > column(hklyl) = HŶT

H ŷ ∈ V∗ hk′l′yl′ =< ê k′ ,H ŷ >= Ak′
k hklyl column(hk′l′yl′) = H”( Ŷ,)T

= A′H( Ŷ,A′)T

< û,H ŷ >∈ R hklukyl = hk′l′uk′yl′ ∈ R ÛHŶT = Û,H”( Ŷ,)T
∈ R

Figure 2.1 Indexgymnastic.
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Section 2.5 Inner product

Starting Point(s):

• A n-dimensional Vector Space V over R and it’s Dual Space V∗.
• Bases {ei},{ei′} in V.
• The corresponding dual bases { ê i

},{ ê i′
} in V∗.

Definition 2.5.1 An Euclidean inner product on V is a transformation from V×V
to R, which satisfies the following properties

i. ∀x,y ∈ V : (x,y) = (y, x)
ii. ∀x,y, z ∈ V∀α, β ∈ R : (αx + βy, z) = α(x, z) + β(y, z)
iii. ∀x ∈ V : x 6= 0⇔ (x, x) > 0

�

Notice(s): 2.5.1 In the mathematics and physics there are often used other inner
products. They differ from the Euclidean inner product and it are variations on
the conditions of Definition 2.5.1 i and Definition 2.5.1 iii. Other possibilities are

a. instead of Def. 2.5.1 i:
∀x,y ∈ V : (x,y) = − (y, x)

b. instead of Def. 2.5.1 iii:
∀x ∈ V, x 6= 0∃y ∈ V : (x,y) 6= 0

Clarification(s): 2.5.1

• Condition Def. 2.5.1 iii implies condition Ntc. 2.5.1 b. Condition Ntc. 2.5.1 b
is weaker then condition Def. 2.5.1 iii.

• In the theory of relativity, the Lorentz inner product plays some rule and it
satisfies the conditions Def. 2.5.1 i, Def. 2.5.1 ii and Ntc. 2.5.1 b.

• In the Hamiltonianmechanics an inner product is defined by the combination
of the conditions Ntc. 2.5.1 a, Def. 2.5.1 ii and Ntc. 2.5.1 b. The Vector Space
V is called a symplectic Vector Space. There holds that dimV = even. (’Phase
space’)

• If the inner product satisfies condition Def. 2.5.1 i, the inner product is called
symmetric. If the inner product satisfies condition Ntc. 2.5.1 a then the inner
product is called antisymmetric.
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Definition 2.5.2 let {ei} be a basis of V and define the numbers gi j = (ei, e j). The
matrix G = [gi j], where i is the row index and j is the column index, is called the
Gram matrix. �

Notation(s):

• If the inverse G−1 of the Gram matrix exists then it is notated by G−1 = [gkl],
with k the row index and j the column index. Notate that gikgkj = δ

j
i and

gligik = δl
k.

Theorem 2.5.1 Consider an inner product (·, ·) on V which satisfies the condi-
tions: Def. 2.5.1 i or Ntc. 2.5.1 a, Def. 2.5.1 ii and Ntc. 2.5.1 b.

a. There exists a bijective linear transformation G : V → V∗ such that

∀x,y ∈ V : (x,y) =< Gx,y > and ∀ẑ ∈ V∗ ,∀y∈V :< ẑ,y >= (G−1 ẑ,y).

b. The Gram matrix is invertible.
c. There holds Gei = gik̂e

k. If x = xiei, then is Gx = xigik̂e
k.

d. There holds G−1 ê l = gliei. If ŷ = yl̂e
l, then is G−1y = ylgliei.

�

Proof

a. Take a fixed u ∈ V and define the linear function x 7→ (u, x). Then there exists a
û ∈ V∗ such that for all x ∈ V holds: < û, x >= (u, x). The addition u 7→ û seems
to be a linear transformation. This linear transformation is called G : V → V∗. So
û = Gu.
Because dim(V) = dim(V∗) < ∞ the bijectivity of G is proved by proving that G
is injective. Assume that there exists some v ∈ V, v 6= 0 such that Gv = 0. Then
holds for all x ∈ V that 0 =< Gv, x >= (v, x) and this is in contradiction with
Ntc. 2.5.1 b.

b. G is invertiblle if and only if GT is invertible. Assume that there is a columnvector
X ∈ Rn, X 6= O such that GTX = O. Then the rowvector XTG = O. With x =
E−1X 6= O follows that the covector E∗(XTG) = Gx = 0. This is contradiction with
the bijectivity of G.

c. The components of Gei are calculated by < Gei, ek >= (ei, ek) = gik. There follows
that Gei = gik̂e

k and also that Gx = G(xiei) = xigik̂e
k.

d. Out of G(gliei) = gliGei = gligik̂e
k = δl

k̂e
k = ê l follows that G−1 ê l = gliei. At last

G−1 ŷ = G−1(yl̂e
l) = ylgliei. �
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Comment(s): 2.5.1

• The second part of Theorem 2.5.1 a gives
the Representation Theorem of Riesz:
For every linear function ĝ ∈ V∗ there exists exactly one vector g ∈ V, namely
g = G−1 ĝ such that ĝ( x̂) = ( ĝ, x̂) for every x ∈ V.

• If the inner product satisfies condition Def. 2.5.1 i, then the Gram matrix is
symmetric, i.e. GT = G. If the inner product satisfies condition Ntc. 2.5.1 a
then the Gram matrix is antisymmetric, i.e. GT = −G.

• For every x,y ∈ V holds (x,y) = (xiei, y je j) = xiy jgi j = XTGY. Note that in
the symmetric case, gi j = g ji, such that (x,y) = YTGX.

• If there are pointed two bases in V, {ei} and {ei′} then holds

gi′ j′ = (ei′ , e j′) = (Ai
i′ei,A

j
j′e j) = Ai

i′A
j
j′(ei, e j) = Ai

i′A
j
j′gi j.

The numbers gi′ j′ are put in a matrix with the name G,,. So G,, = [gi′ j′] with
j′ the column index and i′ the row index, such that in matrix notation can be
written G,, = (A,)TGA,.

Starting Point(s): Concerning Inner Products:

• In the follow up, so also in the next paragraphs, the inner product is assumed
to satisfy the conditions Def. 2.5.1 i, Def. 2.5.1 ii and Ntc. 2.5.1 b, unless oth-
erwise specified. So the Gram matrix will always be symmetric.

Definition 2.5.3 In the case of an Euclidean inner product the length of a vector
x is notated by | x | and is defined by

| x |=
√

(x, x).

�

Lemma 2.5.1 In the case of an Euclidean inner product holds for every pair of
vectors x and y

| (x,y) | ≤ | x | | y | .

This inequality is called the inequality of Cauchy-Schwarz. �
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Definition 2.5.4 In the case of an Euclidean inner product the angle φ between
the vectors x 6= 0 and y 6= 0 is defined by

ϕ = arccos
( (x,y)
| x | | y |

)
.

�

Section 2.6 Reciproke basis

Starting Point(s):

• A n-dimensional Vector Space V over R.
• An inner product (·, ·) on V.
• Bases {ei},{ei′} in V.
• The corresponding dual bases { ê i

},{ ê i′
} in V∗.

Starting Point(s):

• A n-dimensional Vector Space V over R.
• An inner product (·, ·) on V.
• Bases {ei},{ei′} in V.
• The corresponding dual bases { ê i

},{ ê i′
} in V∗.

Definition 2.6.1 To the basis {ei} in V is defined a second basis {ei
} in V which is

defined by {ei
} = G−1 ê i = gi je j. This second basis is called the to the first basis

belonging reciproke basis. �
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Comment(s): 2.6.1

• Out of ei = gi je j follows that gkiei = gkigi je j = δ
j
ke j = ek. These relations

express the relation between a basis and its belonging reciproke basis. It is
important to accentuate that the reciproke basis depends on the chosen inner
product on V. If there was chosen another inner product on V then there was
attached another reciproke basis to the same basis.

• The to the reciproke basis belonging Gram matrix is easily to calculate

(ei, e j) = gikg jl(ek, el) = gikg jlgkl = δi
lg

jl = g ji.

• There holds that (ei, e j) = gil(el, e j) = gilgl j = δi
j. In such a case is said that

the vectors ei and e j for every i 6= j are staying perpendicular to each other.

Lemma 2.6.1 Let {ei} and {ei′} be bases of V and consider there belonging reci-
proke bases {ei

} and {ei′
}. The transistion matrix from the basis {ei} to the basis {ei′}

is given by A′ and the transistion matrix the other way around is given by A,. So
ei = Ai

i′e
i′ and ei′ = Ai′

i e
i. �

Proof It follows direcly out of the transistions between dual bases, see Lemma 2.2.2.
The proof can be repeated but then without "dual activity".
Notate the transition matrices between the bases {ei

} and {ei′
} by B, = [Bi′

i ] and B′ =

[Bi
i′], so ei = Bi

i′e
i′ and ei′ = Bi′

i e
i. On one hand holds (ei, e j) = δi

j and on the other

hand (ei, e j) = (Bi
i′e

i′ ,A j′
j e j′) = Bi

i′A
j′
j δ

i′
j′ = Bi

i′A
j′
j , so Bi

i′A
j′
j = δi

j. Obviously are B, and
A′ each inverse. The inverse of A′ is given by A,, so B, = A,. Completely analogous is
to deduce that B′ = A′ . �

Definition 2.6.2 The numbers (factorisation coefficients) xi in the representation
of x = xiei are called the covariant components of the vector x with respect to the
basis {ei}. �
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Comment(s): 2.6.2

• For the covariant components holds xi = x jδ
j
i = x j(e j, ei) = (x je j, ei) = (x, ei).

• For the contravariant components holds xi = x jδi
j = x j(ei, e j) = (ei, x je j) =

(ei, x).
• With respect to a second basis {ei′} holds xi′ = (x, ei′) = (x,Ai

i′ei) =

Ai
i′(x, ei) = Ai

i′xi.
• The covariant components transform on the sameway as the basisvectors, this

in contrast to the contravariant components. This explains thewords covariant
and contravariant. The scheme beneath gives some clarification.

ei′ = Ai
i′ei ( with: A,)⇒


xi′ = Ai

i′xi covariant case with A,

xi′ = Ai′
i xi contravariant case with A′ = (A,)−1

• Themutual correspondence between the covariant and the contravariant com-
ponents is described with the help of the Gram matrix and its inverse. There
holds that xi = (x, ei) = x j(e j, ei) = g jix j and for the opposite direction holds
xi = (x, ei) = x j(e j, ei) = g jix j. With the help of the Gram matrix and its
inverse the indices can be shifted "up" and "down".

• The inner product between two vectors x and y can be written on several man-
ners

(x,y) =


xiy jgi j = xiyi

xiy jgi j = xiyi.

Summarized:

xi′ = xiAi
i′ ⇔ X̂, = X̂A,

xi = gi jx j
⇔ X̂ = (GX)T

(x,y) = xiyi
⇔ (x,y) = X̂Y

(x,y) = xi′yi′
⇔ (x,y) = X̂,Y

′

(x,y) = gi jxiy j
⇔ (x,y) = XTGY

(x,y) = gi′ j′xi′y j′
⇔ (x,y) =

(
X
′
)T

G,,Y
′
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Conclusion(s): IMPORTANT:
To a FIXED CHOSEN inner product (·.·) the concept of "dual space" can be ignored
without any problems. EVERY preliminary formula with hooks "< ·, · >" in it,
gives a correct expression if the hooks "< ·, · >" are replaced by "(·, ·)" and if the
caps " ·̂ " are kept away. There can be calculated on the customary way such as
is done with inner products.

Section 2.7 Special Bases and Transformation Groups

Starting Point(s):

• A n-dimensional Vector Space V over R.
• An inner product (·, ·) on V.

Lemma 2.7.1 For every invertible symmetric n× n-matrix Q there exists a whole
number p ∈ {0, · · · ,n} and an invertible matrix A such that ATQA = ∆, with ∆ =
diag(1, · · · , 1,−1, · · · ,−1). The matrix ∆ contains p times the number 1 and (n − p)
times th number −1. Notate A = [A j

i ], Q = [Qi j] and ∆ = [∆i j], then holds
Ak

i QklAl
j = ∆i j in index notation. �

Proof Because of the fact that Q is symmetric, there exists an orthogonal matrix F such
that

FTQF = Λ = diag(λ1, · · · , λn).

The eigenvalues of Q are ordered such that λ1 ≥ · · · ≥ λn. The eigenvalues λi 6= 0,
because the matrix Q in invertible. Define the matrix

| Λ |−
1
2 = diag(| λ1 |

−
1
2 , · · · , | λn |

−
1
2 )

and next the matrix A = F | Λ |−
1
2 , then holds

ATQA =
(
F | Λ |−

1
2
)T

QF | Λ |−
1
2 = | Λ |−

1
2 FTQF | Λ |−

1
2 = | Λ |−

1
2 Λ | Λ |−

1
2 = ∆,

with ∆ the searched matrix. The number of positive eigenvalues of the matrix Q gives
the nummer p. �
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Theorem 2.7.1 (Signature of an inner product) There exists a whole number
p ∈ {0, · · · ,n} and a basis {ei} of V such that

(ei, e j) = δi j for 1 ≤ i ≤ p ≤ n and 1 ≤ j ≤ n,

(ei, e j) = −δi jfor p < i ≤ n and 1 ≤ j ≤ n.

�

Proof Let {ci} be a basis of V. Let Q be the corresponding Gram matrix, so Qi j =
(ci, c j). This matrix is symmetrix and invertible. Lemma 2.7.1 gives that there exists an
invertible matrix A such that ATQA = ∆ = diag(1, · · · , 1,−1, · · · ,−1). Write A = [Ai

i′]
and define the set {ci′} with ci′ = Ai

i′ei. Since A is invertible, the set {ci′} is a basis of V
and there holda that

(ci′ , c j′) = Ai
i′A

j
j′(ci, c j) = Ai

i′Qi jA
j
j′ = ∆i′ j′ .

Define ei = ci and the searched basis is found. �

Comment(s): 2.7.1

• The previous proof shows that p is determined by the amount of positive
eigenvalues of the Grammatrix of an arbitrary basis. This amount is for every
basis the same, such that p is uniquely coupled tot the inner product onV. The
number p is called the signature of that inner product. If for instance p = 1
then sometimes the signature is also notated by (+,−,−, · · · ,−).

Definition 2.7.1 The to Theorem 2.7.1 belonging basis {ei} is called an orthonormal
basis of the Vector Space V. �

Notice(s): 2.7.1

• TheGrammatrix belonging to an orthonormal basis is a diagonalmatrix, with
the first p diagonal elements equal to 1 and the remaining diagonal elements
equal to -1. There holds the following relationship between the reciproke basis
of an orthonormal basis and the orthonormal basis itself,

ei = ei for 1 ≤ i ≤ p and ei = −ei for p < i ≤ n. (2.2)
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Definition 2.7.2 The set of transition matrices between orthonormal bases is
called the transformation group. For every p ∈ {0, 1, · · · ,n} and q = n − p this
transformation group is defined by

O(p, q) = {A ∈ Rn×n
| AT∆A = ∆}.

A special subgroup of it is

SO(p, q) = {A ∈ O(p, q) | det A = 1}.

�

Example(s): 2.7.1

• If the inner product on V has signature p = n then the group O(p, q) is exactly
equal to the set of orthogonal matrices. This group is called the orthogonal
group and is notated by O(n). An element out of the subgroup SO(n) trans-
forms an orthogonal basis to an orthogonal basis with the same "orientation".
Remember that the orthogonal matrices with determinent equal to 1 describe
rotations around the origin.

• Let the dimension of V be equal to 4 and the inner product on V has signature
p = 1. Such an inner product space is called Minkowski Space. The
belonging group O(1, 3) is called the Lorentz group and elements out of this
group are called Lorentz transformations. Examples of Lorentz transforma-
tions are

A1 =


coshϕ sinhϕ 0 0
sinhϕ coshϕ 0 0

0 0 1 0
0 0 0 1

,
with ϕ an arbitrary real number and

A2 =


1 0 0 0
0
0 T
0

,
where T an arbitrary element out of the orthogonal group O(3). �

Section 2.8 Tensors
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Starting Point(s):

• A n-dimensional Vector Space V over R.
• An inner product (·, ·) on V.

2.8.1 General Definition

Definition 2.8.1 The
(r
s
)
-tensor on V, with r = 0, 1, 2, · · · , s = 0, 1, 2, · · · is a func-

tion

T : V∗ × · · · × V∗︸ ︷︷ ︸
r times

×V × · · · × V︸ ︷︷ ︸
s times

→ R,

û; v̂; · · · ; ẑ︸ ︷︷ ︸
r covectors⊆V∗

;v;w; · · · ;y︸ ︷︷ ︸
s vectors⊆V

7→ R,

which is linear in each argument. This means that for every α, β ∈ R and each
"slot" holds that by way of example

T( û, v̂, · · · , α ẑ1 + β ẑ2,v;w; · · · ;y) =

αT( û, v̂, · · · , ẑ1,v;w; · · · ;y) + βT( û, v̂, · · · , ẑ2,v;w; · · · ;y).

Formore specification there is said thatT is contravariant of order r and is covariant
of order s. If holds that p = r+s then there is sometimes spoken about a p-tensor.�

Comment(s): 2.8.1

• The order of the covectors û, v̂, · · · , ẑ and the order ofthe vectors v;w; · · · ;y is
of importance! Most of the time, the value of T changes if the order of two
covectors or vectors are changed. If a vector is changed with a covector the
result is a meaningless expression.

• Sometimes a notation is used such that the covectors and the vectors are not
splitted up into two separated groups, but are placed on an agreed fixed posi-
tion. The order remains of importance and the previous remark is still valid!

2.8.2 (0
0
)-tensor= scalar=number
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If p = 0 there are no vectors or covectors to fill in. The following definition is just a
convention.

Definition 2.8.2 A
(0
0
)
-tensor is an alternative name for a real number.

A
(0
0
)
-tensor is also called a scalar. �

2.8.3 (1
0
)-tensor= contravariant 1-tensor= vector

Definition 2.8.3 A
(1
0
)
-tensor is a linear transformation of V∗ to R. �

Notice(s): 2.8.1

• Write the tensor as ŷ 7→ T( ŷ ). In accordeancewith Lemma 2.3.1 there is some
vector a ∈ V such that T( ŷ ) =< ŷ, a > for all ŷ ∈ V∗. The set of

(1
0
)
-tensors is

exactly equal to the Vector Space V, the startingpoint.
• For every basis {ei} of V a

(1
0
)
-tensor T can be written as T = T( ê i)ei = Tiei,

with Tiei = aiei = a. For every ŷ ∈ V∗ holds as known

T( ŷ ) = T(yîe
i) = yiT( ê i) = T( ê i) < ŷ, ei >=< ŷ, aiei >=< ŷ, a > .

Definition 2.8.4 ThenumbersTi = T( ê i) are called the contravariant components
of the tensor T with respect to the basis {ei}. This explains also the name "con-
travariant 1-tensor". �

2.8.4 (0
1
)-tensor= covariant 1-tensor= covector

Definition 2.8.5 A
(0
1
)
-tensor is a linear transformation of V to R. �
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Notice(s): 2.8.2

• Write the tensor as x 7→ F(x). In accordeance with Definition 2.2.1 the func-
tions F is a linear function on V and can be written as x 7→ F(x) =< f̂, x >, for
certain f̂ ∈ V∗. The set of

(0
1
)
-tensors is exactly equal to Dual Space V∗ of the

Vector Space V, the startingpoint.
• For every basis {ei} of V a

(0
1
)
-tensor F can be written as F = F(ei) ê i = Fîe

i,
with Fîe

i = fîe i = f̂. For every x ∈ V holds as known

F(x) = T( x̂ iei) = x̂ i F(ei) = F(ei) < ê i, x >=< fi ê i, x >=< f̂, x > .

Definition 2.8.6 The numbers Fi = F(ei) are called the covariant components of
the tensor F with respect to the basis {ei}. This explains also the name "covariant
1-tensor". �

2.8.5 (0
2
)-tensor= covariant 2-tensor =

linear transformation: V → V∗

Definition 2.8.7 A
(0
2
)
-tensor is a linear transformation of V × V to R, which is

linear in both arguments. A
(0
2
)
-tensor is also called a bilinear function on V×V. �

Clarification(s): 2.8.1

• For a
(0
2
)
-tensor ϕ holds:

ϕ(αx + βy, z) = αϕ(x, z) + βϕ(y, z),

ϕ(x, αy + βz) = αϕ(x,y) + βϕ(x, z),

for all x,y, z ∈ V and for every α, β ∈ R.

Definition 2.8.8 For every pair of
(0
2
)
-tensors ϕ and ψ, the

(0
2
)
-tensor ϕ + ψ is

defined by (ϕ +ψ)(x,y) = ϕ(x,y) +ψ(x,y) and for every α ∈ R the
(0
2
)
-tensor αϕ is

defined by (αϕ)(x,y) = αϕ(x,y). �
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Comment(s): 2.8.2

• The set of
(0
2
)
-tensors is a Vector Space overR, which is notated by V∗⊗V∗ and

also with T0
2(V).

Example(s): 2.8.1 Every type of inner product on V, such as considered in
Section 2.5, is a

(0
2
)
-tensor. If there is made a fixed choice for an inner product

on some Vector Space V, then this inner product is called a fundamental tensor. �

Definition 2.8.9 For every p̂, q̂ ∈ V∗ the
(0
2
)
-tensor p̂ ⊗ q̂ on V is defined by

( p̂ ⊗ q̂ )(x,y) =< p̂, x >< q̂,y > .

�

Notice(s): 2.8.3

• If the system { p̂, q̂ } is linear independent then p̂ ⊗ q̂ 6= q̂ ⊗ p̂.

Definition 2.8.10 A linear transformation K : V → V∗ is associated with a(0
2
)
-tensor on two manners:

K(x,y) =< Kx,y >,

κ(x,y) =< Ky, x >

�

If there are made good compromises then there exists an 1-1 correspondence between
the

(0
2
)
-tensors and the linear transformations from V to V∗.
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Theorem 2.8.1 Given: a
(0
2
)
-tensor K.

• There exists just one linear transformation K : V → V∗ such that

∀x ∈ V ∀y ∈ V : K(x,y) =< Kx,y > .

Explicitly: K = K(·, ei) ê i, so Ku = K(u, ei) ê i.
• There exists just one linear transformation K∗ : V → V∗ such that

∀x ∈ V ∀y ∈ V : K(x,y) =< K∗y, x > .

Explicitly: K∗ = K(ei, ·) ê i, so K∗w = K(ei,w) ê i. �

Proof

• Choose a fixed a ∈ V and look to the
(0
1
)
-tensor x 7→ K(a, x). Interpret anyhow

a as variable, such that there is defined a linear transformation K : V → V∗ by
a 7→ K(a, ·) =< Ka, · >. Then K(u,v) =< Ku,v >.
The

(0
1
)
-tensorK(u, x) can bewritten asK(u, x) = K(u, ei) < ê i, x >, see Notice 2.8.2.

After a basis transition holds Ku = K(u, ei′) ê i.
• Choose a fixed a ∈ V and look to the

(0
1
)
-tensor x 7→ K(x, a). Define the linear trans-

formation K∗ : V → V∗ by a 7→ K(·, a) =< K∗a, · >. Then K(u,v) =< K∗v,u >.
The

(0
1
)
-tensor K(x,w) can be written as K(x,w) = K(ei,w) < ê i,w >, see

Notice 2.8.2, so K∗w = K(ei,w) ê i.
The explicit representation after a basis transition holds K∗u = K(ei′ ,u) ê i′ . �

Notice(s): 2.8.4

• If ∀x ∈ V ∀y ∈ V : K(x,y) = K(y, x) then holds K = K∗.
• If ∀x ∈ V ∀y ∈ V : K(x,y) = −K(y, x) then holds K = −K∗.
• To applications there is often said that a 2-tensor is the same as a matrix. There

enough arguments to bring up against that suggestion. After the choice of a
basis a 2-tensor can be represented by a matrix, on the same way as is done to
linear transformations.

Definition 2.8.11 Let {ei} a basis of V and ϕ a
(0
2
)
-tensor on V. The numbers ϕi j,

defined byϕi j = ϕ(ei, e j), are called the covariant components of the tensorϕwith
respect to the basis {ei}. �
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Notice(s): 2.8.5

• The addition "covariant" to (covariant) components is here more a verbiage.
There are no other components then covariant components such that only vec-
tors can be filled in. See nevertheless also Paragraph 2.8.11.

• For x,y ∈ V holds ϕ(x,y) = xiy jϕi j.
• The action of a

(0
2
)
-tensor on two vectors x and y can be written as ϕ(x,y) =

ϕi jxiy j.
• Let {ei′} be a second basis on V then holdsϕi′ j′ = ϕ(ei′ , e j′) = ϕ(Ai

i′ei,A
j
j′e j) =

Ai
i′A

j
j′ϕi j. Hereby the relation is denoted between the covariant components

of a tensor for two arbitrary bases. Compare with Paragraph 2.4.

Definition 2.8.12 Let {ei} be basis onV. To every pair indices i and j the
(0
2
)
-tensor

ê i
⊗ ê j is defined by

( ê i
⊗ ê j)(x,y) = ê i(x) ê j(y) =< ê i, x >< ê j,y > .

�

Lemma 2.8.1

• The set { ê i
⊗ ê j
} is a basis of T0

2(V). There holds: ϕ = ϕi j ê
i
⊗ ê j.

• If dim( V ) = n then dim( T0
2(V) ) = n2. �

Proof Let ϕ ∈ T0
2(V) then for all x,y ∈ V holds that

ϕ(x,y) = ϕ(xiei, y je j) = ϕi jϕ(xi)ϕ(y j) = ϕi j < ê i, x >< ê j,y >= ϕi j( ê i
⊗ ê j)(x,y),

or ϕ = ϕi j ê
i
⊗ ê j. The Vector Space T0

2(V) is accordingly spanned by the set { ê i
⊗ ê j
}.

The final part to prove is that the system { ê i
⊗ ê j
} is linear independent. Suppose that

there are n2 numbers αi j such that αi j ê
i
⊗ ê j = 0. For every k and l holds that

0 = αi j( ê i
⊗ ê j)(ek, el) = αi jδ

i
kδ

j
l = αkl.

�

Comment(s): 2.8.3 As previously stated an inner product is an
(0
2
)
-tensor. Hereby

is considered a linear transformation from V to V∗, which is defined by a 7→ (a, ·).
That is exactly the bijective linear transformation G out of Theorem 2.5.1.
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2.8.6 (2
0
)-tensor= contravariant 2-tensor =

linear transformation: V∗ → V

Definition 2.8.13 A
(2
0
)
-tensor is a linear transformation of V∗ ×V∗ toR, which is

linear in both arguments. A
(2
0
)
-tensor is also called a bilinear function onV∗×V∗.�

Clarification(s): 2.8.2

• For a
(2
0
)
-tensor H holds:

H(α x̂ + β ŷ, ẑ ) = αH( x̂, ẑ ) + βH( ŷ, ẑ ),

H( x̂, α ŷ + β ẑ ) = αH( x̂, ŷ ) + βH( x̂, ẑ ),

for all x̂, ŷ, ẑ ∈ V∗ and for every α, β ∈ R.

Definition 2.8.14 For every pair of
(2
0
)
-tensors H and h, the

(2
0
)
-tensor H + h is

defined by (H + h)( x̂, ŷ ) = H( x̂, ŷ ) + h( x̂, ŷ ) and for every α ∈ R the
(2
0
)
-tensor

αH is defined by (αH)( x̂, ŷ ) = αH( x̂, ŷ ). �

Comment(s): 2.8.4

• The set of
(2
0
)
-tensors is a Vector Space over R, which is notated by V ⊗ V and

also with T2
0(V).

Definition 2.8.15 For every x,y ∈ V the
(2
0
)
-tensor x ⊗ y on V is defined by

(x ⊗ y)( û, v̂ ) =< û, x >< v̂,y > .

�

Notice(s): 2.8.6

• If the system {x,y} is linear independent then x ⊗ y 6= y ⊗ x.
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Definition 2.8.16 A linear transformationH : V∗ → V is associated with a(2
0
)
-tensor on two manners:

H( x̂, ŷ ) =< x̂,H ŷ >,

h( x̂, ŷ ) =< ŷ,Hx̂ >

�

If there are made good compromises then there exists an 1-1 correspondence between
the

(2
0
)
-tensors and the linear transformations from V∗ to V.

Theorem 2.8.2 Given: a
(2
0
)
-tensor H.

• There exists just one linear transformationH : V∗ → V such that

∀ x̂ ∈ V∗ ∀ ŷ ∈ V∗ : H( x̂, ŷ ) =< x̂,H ŷ > .

Explicitly: H = H( ê i, ·)e i, soH v̂ = H( ê i, v̂ )ei.
• There exists just one linear transformationH∗ : V∗ → V such that

∀ x̂ ∈ V∗ ∀ ŷ ∈ V∗ : H( x̂, ŷ ) =< ŷ,H∗ x̂ > .

Explicitly: H∗ = H(·, ê i )e i, soH∗ v̂ = H( v̂, ê i )e i . �
�

Proof

• Choose a fixed b̂ ∈ V∗ and look to the
(1
0
)
-tensor x̂ 7→ H( x̂, b̂ ). Interpret anyhow

b̂ as variable, such that there is defined a linear transformation H : V∗ → V by
b̂ 7→ H(·, b̂ ) =< ·,H b̂ >. Then H( û, v̂ ) =< û,H v̂ >.
See Paragraph 2.8.3 for the explicit notation of

(1
0
)
-tensor.

After a basis transition holdsH û = H( ê i′ , û ) ei′ .
• Choose a fixed â ∈ V∗ and look to the

(1
0
)
-tensor x̂ 7→ H( â, x̂ ). Interpret anyhow

â as variable, such that there is defined a linear transformation H : V∗ → V by
â 7→ H( b̂, ·) =< ·,H∗ b̂ >. Then H( û, v̂ ) =< v̂,H∗ û >.
See Paragraph 2.8.3 for the explicit notation of

(1
0
)
-tensor.

After a basis transition holdsH∗ û = H( û, ê i′ ) ei′ . Compare with Paragraph 2.4. �
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Notice(s): 2.8.7

• If ∀ x̂ ∈ V∗ ∀ ŷ ∈ V∗ : H( x̂, ŷ ) = H( ŷ, x̂ ) then holdsH = H∗.
• If ∀ x̂ ∈ V∗ ∀ ŷ ∈ V∗ : H( x̂, ŷ ) = −H( ŷ, x̂ ) then holdsH = −H∗.

Definition 2.8.17 Let {ei} be a basis of V and H a
(2
0
)
-tensor on V. The numbers

Hi j, defined by Hi j = H( ê i′ , ê j′ ), are called the contravariant components of the
tensor H with respect to the basis {ei}. �

Notice(s): 2.8.8

• The addition "contravariant" to (contravariant) components is heremore a ver-
biage. See nevertheless also Paragraph 2.8.11.

• For x̂, ŷ ∈ V holds H( x̂, ŷ ) = xiy jHi j.
• The action of a

(2
0
)
-tensor on two covectors x̂ and ŷ can be written as H( x̂, ŷ ) =

Hi jxiy j.
• Let {ei′} be a secondbasis onV then holdsHi′ j′ = H( ê i′ , ê j′ ) = H(Ai′

i ê
i,A j′

j ê
j) =

Ai′
i A j′

j Hi j. Hereby the relation is denoted between the (contra)variant compo-
nents of a

(2
0
)
-tensor for two arbitrary bases.

Definition 2.8.18 Let {ei} be basis onV. To every pair indices i and j the
(2
0
)
-tensor

ei ⊗ e j is defined by

(ei ⊗ e j)( x̂, ŷ ) =< x̂, ei >< ŷ, e j > .

�

Lemma 2.8.2

• The set {ei ⊗ e j} is a basis of T2
0(V). There holds: H = Hi j ei ⊗ e j.

• If dim( V ) = n then dim( T2
0(V) ) = n2. �

Proof Let θ ∈ T2
0(V) then for all x̂, ŷ ∈ V∗ holds that

θ( x̂, ŷ ) = θ(xîe
i, y ĵe

j) = θi jxiy j = θi j < x̂, ei >< ŷ, e j >= θi j(ei ⊗ e j)( x̂, ŷ ),
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or θ = θi j ei ⊗ e j.
The Vector Space T2

0(V) is accordingly spanned by the set {ei ⊗ e j}. The final part to
prove is that the system {ei ⊗ e j} is linear independent. This part is done similarly as in
Lemma 2.8.1. �

2.8.7 (1
1
)-tensor=mixed 2-tensor =

linear transformation: V → V and V∗ → V∗

Definition 2.8.19 A
(1
1
)
-tensor is a linear transformation of V∗ ×V to R, which is

linear in both arguments. A
(1
1
)
-tensor is also called a bilinear function on V∗×V. �

Clarification(s): 2.8.3

• For a
(1
1
)
-tensor R holds:

R(α x̂ + β ŷ, z ) = αR( x̂, z ) + βR( ŷ, z ),

R( x̂, αy + β z ) = αR( x̂,y) + βR( x̂, z),

for all x̂, ŷ,∈ V∗, y, z,∈ V and for every α, β ∈ R.

Comment(s): 2.8.5

• The set of
(1
1
)
-tensors is a Vector Space overR, which is notated by V ⊗V∗ and

also with T1
1(V).

Definition 2.8.20 For every pair x ∈ V, ŷ ∈ V∗, the
(1
1
)
-tensor x⊗ ŷ on V is defined

by

(x ⊗ ŷ)( û,v) =< û, x >< ŷ,v > .

�
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Definition 2.8.21

• With a linear transformation R : V 7→ V is associated a
(1
1
)
-tensor:

R( x̂,y) =< x̂,Ry > .

• With a linear transformation P : V∗ 7→ V∗ is associated a
(1
1
)
-tensor:

P( x̂,y) =< P x̂,y > .

�

There exists an 1-1 correspondence between the
(1
1
)
-tensors and the linear transforma-

tions from V to V. There exists an 1-1 correspondence between the
(1
1
)
-tensors and the

linear transformations from V∗ to V∗.

Theorem 2.8.3 Given: a
(1
1
)
-tensor R.

• There exists just one linear transformation R : V → V such that

∀ x̂ ∈ V∗ ∀y ∈ V : R( x̂,y) =< x̂,Ry > .

Explicitly: R = R( ê i, ·)ei, so Rv = R( ê i,v )ei.
• There exists just one linear transformation R∗ : V∗ → V∗ such that

∀ x̂ ∈ V∗ ∀y ∈ V : R( x̂,y) =< R∗ x̂,y > .

Explicitly: R∗ = R(·, e j ) ê j, so R∗ û = R( û, e j ) ê j . �
�

Proof

• Choose a fixed a ∈ V and look to the
(1
0
)
-tensor x̂ 7→ R( x̂, a ). Interpret anyhow

a as variable, such that there is defined a linear transformation R : V → V by
a 7→ R(·, a ) =< ·,R a >= Ra.
After a basis transition holds Ru = R( ê i′ , û ) ei′ , such that the representation is
independent for basis transistions.

• Choose a fixed b̂ ∈ V∗ and look to the
(0
1
)
-tensor y 7→ R( b̂,y ), an element of V∗.

Interpret anyhow b̂ as variable, such that there is defined a linear transformation
R∗ : V∗ → V∗ by b̂ 7→ R( b̂, ·) =< R∗ b̂, · >. Then R( û,v ) =< R∗ v̂,u >.
After a basis transition holds R∗ û = R( û, e j ) ê j. Compare with Paragraph 2.4. �
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Notice(s): 2.8.9

• Shifting x̂ and y in R( x̂, y) gives a meaningless expression.

Definition 2.8.22 Let {ei} be a basis of V and R a
(1
1
)
-tensor on V. The numbers

Ri j, defined by Ri j = R( ê i, e j ), are called the (mixed) components of the tensor R
with respect to the basis {ei}. �

Notice(s): 2.8.10

• The addition "mixed" to (contravariant) components is here more a verbiage.
There is nothing else that can be done. See nevertheless also Paragraph 2.8.11.

• For x̂, ŷ ∈ V holds R( x̂,y) = xiy jRi
j.

• Let {ei′} be a secondbasis onV then holdsRi′ j′ = R( ê i′ , e j′) = R(Ai′
i ê

i,A j
j′ e j) =

Ai′
i A j

j′R
i j. Hereby the relation is denoted between the (mixed) components of

a
(1
1
)
-tensor for two arbitrary bases.

Definition 2.8.23 Let {ei} be basis onV. To every pair indices i and j the
(1
1
)
-tensor

ei ⊗ ê j is defined by

(ei ⊗ ê j)( x̂,y ) =< x̂, ei >< ê j,y > .

�

Lemma 2.8.3

• The set {ei ⊗ ê j
} is a basis of T1

1(V). There holds: R = Ri
j ei ⊗ ê j.

• If dim( V ) = n then dim( T1
1(V) ) = n2. �

Proof Let ψ ∈ T1
1(V) then for all x̂ ∈ V∗,y ∈ V holds that

ψ( x̂,y) = ψ(xîe
i, y je j) = ψi

jxiy j = ψi
j < x̂, ei >< ê j,y >= ψi

j(ei ⊗ ê j)( x̂,y ),

or ψ = ψi
j ei ⊗ ê j.

The Vector Space T1
1(V) is accordingly spanned by the set {ei ⊗ ê j}. The final part to

prove is that the system {ei ⊗ ê j} is linear independent. This part is done similarly as in
Lemma 2.8.1. �
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2.8.8 (0
3
)-tensor= covariant 3-tensor =

linear transformation: V → (V∗ ⊗ V∗) and (V ⊗
V)→ V∗

Definition 2.8.24 A
(0
3
)
-tensor is a linear transformation of V×V×V toR, which

is linear in each of its three vector arguments. �

The meaning is an obvious expansion of the Clarification(s) 2.8.1, 2.8.2 and 2.8.3. See
also the general definition 2.8.1.

Definition 2.8.25 For every pair of
(0
3
)
-tensors Ψ and σ, the

(0
3
)
-tensor Ψ + σ is

defined by (Ψ +σ)(x,y, z) = Ψ(x,y, z) +σ(x,y, z) and for every α ∈ R the
(0
3
)
-tensor

αΨ is defined by (αΨ)(x,y, z) = αΨ(x,y, z). �

Comment(s): 2.8.6

• The set of
(0
3
)
-tensors is a Vector Space overR, which is notated by V∗⊗V∗⊗V∗

and also with T0
3(V).

Definition 2.8.26 For every û, v̂, ŵ ∈ V∗ the
(0
3
)
-tensor û ⊗ v̂ ⊗ ŵ on V is defined

by

( û ⊗ v̂ ⊗ ŵ )( x,y, z ) =< û, x >< v̂,y >< ŵ, z > .

�

Comment(s): 2.8.7 Also here the order of the tensorproduct is essential.

Definition 2.8.27 Let {ei} be a basis of V and Ψ a
(0
3
)
-tensor on V. The numbers

Ψhij, defined by Ψhij = Ψ( eh, ei, e j ), are called the covariant components of the
tensor Ψ with respect to the basis {ei}. The collection of covariant components of a(0
3
)
-tensor are organized in a 3-dimensional cubic matrix and is notated by [Ψhij]. �
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Lemma 2.8.4

• The set { ê j
⊗ ê j

⊗ ê j
} is a basis of T0

3(V). There holds: Ψ = Ψhij ê
j
⊗ ê j

⊗ ê j.
• If dim( V ) = n then dim( T0

3(V) ) = n3. �

Comment(s): 2.8.8

• A
(0
3
)
-tensor Ψ can be understood, on 3 different manners as a linear transfor-

mation from V to T0
2(V) = V∗⊗V∗. Thereby on 6 different manners as a linear

transformation of V to the "Vector Space of linear transformations V → V∗ ".
Simply said, if there is put a vector a in a slot of the Tensor Ψ, there is got a(0
2
)
-tensor, for instance Ψ(·, a, ·). In index notation Ψhij ai.

• A
(0
3
)
-tensor Ψ can be understood, on 6 different manners as a linear transfor-

mation from the "Vector Space of linear transformation V∗ → V " to V∗. Let
H = Hi j ei ⊗ e j. For instance:

Ψ(ei, e j, ·) = Ψ(ei, e j, ek) Hi j ê k = Ψ(ei, e j, ek) Hi j < ê k, · >

defines a covector. In index notation Ψi jk Hi j.
• A special case is the stress tensor, which descibes the "stress condition" in

an infinity wide linear medium. The stress tensor satisfies the property that
∀x,y, z ∈ V : Ψ(x,y, z) = −Ψ(x, z,y). Consider a parallelogram, spanned by
the vectors a and b. The covector f̂ = Ψ(·, a,b) represents the force working
at the parallelogram. Indeed, if the vectors a and b are changed of order, then
the force changes of direction ( action=reaction). The linear "stress condition"
can be described less general and less elegant, with a 2-tensor. There has to be
made use of an inner product and a cross product. That is the way, it is done
most of the time in textbooks. See for more information Appendix ??.

2.8.9 (2
2
)-tensor=mixed 4-tensor =

linear transformation: (V → V)→ (V → V) = · · ·

Definition 2.8.28 A
(2
2
)
-tensor is a linear transformation of V∗ ×V∗ ×V ×V to R,

which is linear in each of its four vector arguments. �

For more explanation, see Definition 2.8.1.
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Comment(s): 2.8.9

• The set of
(2
2
)
-tensors is a Vector Space over R, which is notated by

V ⊗ V ⊗ V∗ ⊗ V∗ and also with T2
2(V).

Definition 2.8.29 For every set a,b ∈ V, ĉ, d̂ ∈ V∗ the
(2
2
)
-tensor a ⊗ b ⊗ ĉ ⊗ d̂ is

defined by

( a ⊗ b ⊗ ĉ ⊗ d̂ )( û, v̂, x,y) =< û, a >< v̂,b >< ĉ, x >< d̂,y > .

�

Notice(s): 2.8.11

• Also here, if the system { ĉ, d̂ } is linear independent then
a ⊗ b ⊗ ĉ ⊗ d̂ 6= a ⊗ b ⊗ d̂ ⊗ ĉ.

Definition 2.8.30 Let {ei} be a basis of V and Θ a
(2
2
)
-tensor on V. The numbers

Θ
jk
hi , defined by Θ

jk
hi = Θ( ê j, ê k, eh, ei ), are called the (mixed) components of the

tensor Θ with respect to the basis {ei}. The collection of mixed components of a(2
2
)
-tensor are organized in a 4-dimensional cubic matrix and is notated by [Θ jk

hi]. �

Lemma 2.8.5

• The set {e j⊗ek⊗ê
h
⊗ê i
} is a basis ofT2

2(V). There holds: Θ = Θ
jk
hi e j⊗ek⊗ê

h
⊗ê i.

• If dim( V ) = n then dim( T2
2(V) ) = n4. �



41

Comment(s): 2.8.10 A
(2
2
)
-tensor can be understood on many different ways as

a linear transformation of a "space of linear transformations" to a "space of linear
transformations".

• The case: (V → V) → (V → V) and (V → V) → (V∗ → V∗).
Let R : V → V be a linear transformation. Write R = Rl

mel ⊗ êm.
Form the

(1
1
)
-tensor Rl

mΘ(·, êm, el, ·). This tensor can be seen as a linear trans-
formation V → V, or V∗ → V∗. The actions of these "image-transformations"
on V, respectively V∗ are described by:

(ΘR) : V → V : x 7→ (ΘR)x = Rl
mΘ( ê j, êm, el, x)e j

= Rl′
m′Θ( ê j′ , êm′ , el′ , x)e j′

(ΘR)∗ : V∗ → V∗ : x̂ 7→ (ΘR) x̂ = Rl
mΘ( x̂, êm, el, e j) ê j

= Rl′
m′Θ( x̂, êm′ , el′ , e j′) ê j′

In index notation is written

[Rk
h] 7→ [(ΘR)k

h] = [Θ jk
hiR

i
j], [xk] 7→ [Θ jk

hiR
i
jx

h], [xh] 7→ [Θ jk
hiR

i
jxk].

This "game" can also be played with summations about other indices.
• The case: (V → V∗) → (V → V∗) and (V∗ → V) → (V∗ → V).

Let K : V → V∗ be a linear transformation. Write K = Ki ĵe
i
⊗ ê j. In this case

there is worked only with the index notation.

[Khi] 7→ [Θ jk
hiK jk], [xh] 7→ [Θ jk

hiK jkxh], other choice: [xh] 7→ [Θ jk
hiK jkxi]

WithH : V∗ → V andH = H jke j ⊗ ek,

[H jk] 7→ [Θ jk
hiH

hi], [x j] 7→ [Θ jk
hiH

hix j], other choice: [xk] 7→ [Θ jk
hiH

hixk].

Et cetera.

The Hooke-tensor in the linear elasticity theory is an important example of a 4-tensor.
This tensor transforms linearly a "deformation condition", described by a linear trans-
formation, to a "stress condition", also described by a linear transformation. See for
more information Appendix ??.



422.8.10 Continuation of the general considerations
about (r

s
)-tensors.

Contraction and ⊗.

The starting-point is the general definition in paragraph 2.8.1.

Definition 2.8.31 Given: An ordered collection of r vectors a,b, · · · ,d ∈ V. An
ordered collection of s covectors p̂, q̂, · · · , û ∈ V∗.
The

(r
s
)
-tensor a ⊗ b ⊗ · · · ⊗ d︸ ︷︷ ︸

r vectors

⊗ p̂ ⊗ q̂ ⊗ · · · ⊗ û︸ ︷︷ ︸
s covectors

is defined by

(
a ⊗ b ⊗ · · · ⊗ d ⊗ p̂ ⊗ q̂ ⊗ · · · ⊗ û

)
( v̂, ŵ, · · · , ẑ︸ ︷︷ ︸

r covectors

, f,g, · · · ,k︸ ︷︷ ︸
s vectors

) =

< v̂, a > · · · < ẑ,d >< p̂, f > · · · < û,k > .

For every choice of the covectors and vectors the righthand side is
a product of (r + s) real numbers! �

Definition 2.8.32 For every pair of
(r
s
)
-tensorsT and t, the

(r
s
)
-tensorT+t is defined

by (T+t)( v̂, ŵ, · · · , ẑ, f,g, · · · ,k) = T( v̂, ŵ, · · · , ẑ, f,g, · · · ,k)+t( v̂, ŵ, · · · , ẑ, f,g, · · · ,k)
and for every α ∈ R the

(r
s
)
-tensor αT is defined by (αT)( v̂, ŵ, · · · , ẑ, f,g, · · · ,k) =

αT( v̂, ŵ, · · · , ẑ, f,g, · · · ,k). �

The proof of the following theorem goes the same as the foregoing lower order exam-
ples.
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Theorem 2.8.4

• The set of
(r
s
)
-tensors is a Vector Space over R, which is notated by Tr

s(V).
• Let {ei} be basis on V and dim(V) = n then a basis of Tr

s(V) is given by

{ ei1 ⊗ ei2 ⊗ · · · ⊗ eir ⊗ ê j1 ⊗ ê j2
⊗ · · · ⊗ ê js

}, with
{ 1 ≤ i1 ≤ n, · · · , 1 ≤ ir ≤ n,

1 ≤ j1 ≤ n, · · · , 1 ≤ js ≤ n.

So dimTr
s = nr+s.

• In the expansion

T = Ti1i2···ir
j1 j2··· js

ei1 ⊗ ei2 ⊗ · · · ⊗ eir ⊗ ê j1 ⊗ ê j2
⊗ · · · ⊗ ê js ,

the components are given by

Ti1i2···ir
j1 j2··· js

= T( ê i1 , ê i2 , · · · , ê ir , e j1 , e j2 , · · · , e js )

• If there is changed of a basis the following transition rule holds

T
i′1i′2···i

′
r

j′1 j′2··· j
′
s

= A
i′1
i1

A
i′2
i2
· · ·Ai′r

ir
A j1

j′1
A j2

j′2
· · ·A js

j′s
Ti1i2···ir

j1 j2··· js

�

The order of a tensor can be decreased with 2 points. The definition makes use of a
basis of V. The definition is independent of which basis is chosen.

Definition 2.8.33 Let {ei} be basis on V. Let T ∈ Tr
s(V) with r ≥ 1 and s ≥ 1.

Consider the summation

T(· · · , ê i, · · · , ei, · · ·) = T(· · · , ê i′ , · · · , ei′ , · · ·).

The dual basis vectors stay on a fixed chosen "covector place". The basis vectors
stay on a fixed chosen "vector place". The defined summation is a

(r−1
s−1

)
-tensor. The

corresponding linear transformation fromTr
s(V) toTr−1

s−2(V) is called a contraction.�
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Example(s): 2.8.2

• The contraction of a
(1
1
)
-tensor R is scalar. In index notation: Ri

i = Ri′
i′ . This is

the "trace of the matrix". In the special case of a
(1
1
)
-tensor of the form a ⊗ b̂ :

biai = bi′ai′ =< b̂, a >.
• Consider the mixed 5-tensor φ, in index notation

φi·
· jklm = ghiφhjklm.

A contraction over the first two indices (i and j) gives a 3-tensor ψ, the
covariant components are given by

ψklm = φi·
·iklm = ghiφhiklm = φ·ii·klm

�

In some special cases a "tensorproduct" is already seen, notated by ⊗. In general, if S ∈
Tr1

s1 (V) and T ∈ Tr2
s2 (V) are given, then the producttensor S ⊗ T ∈ Tr1+r2

s1+s2
(V) can be build.

To keep the book-keeping under control, a definition is given for some representative
special case.

Definition 2.8.34 Given: R ∈ T2
1(V) and S ∈ T1

3(V).
Then: R ⊗ S ∈ T3

4(V) is defined by(
R ⊗ S

)
( û, v̂, ŵ, r, x,y, z ) = R( û, v̂, r) S( ŵ, x,y, z )

Pay attention to the order of how "the vectors and covectors are filled in"! �

Comment(s): 2.8.11

• For the sake of clarity:(
S ⊗ R

)
( û, v̂, ŵ, r, x,y, z ) = S( û, r, x,y ) R( v̂, ŵ, z).

• The components of the mentioned tensorproducts are to a given basis(
R ⊗ S

)i jk
lmnr

= Ri j
l Sk

mnr, respectively
(
S ⊗ R

)i jk
lmnr

= Si
lmnR jk

r .

• The tensorproduct is not commutative, in general: R ⊗ S 6= S ⊗ R.
• The tensorproduct is associative, that means that: (R ⊗ S) ⊗ T = R ⊗ (S ⊗ T).

Practical it means that the expression R ⊗ S ⊗ T is useful.
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2.8.11 Tensors on Vector Spaces provided with an
inner product

Starting Point(s):

• A n-dimensional Vector Space V over R.
• An inner product (·, ·) on V.

There is known out of the paragraphs 2.5 and 2.6 that if there is "chosen an inner prod-
uct on V", "V and V∗ can be identified with each other". There exists a bijective linear
transformation G : V → V∗ with inverse G−1 : V∗ → V. To every basis {ei} on V, there is
available the associated "reciprocal" basis {ei

} in V, such that (ei, e j) = δi
j.

This means that it is sufficient to work with
(0
p
)
-tensors, the covariant tensors. Every

"slot" of some mixed
(r
s
)
-tensor, which is sensitive for covectors can be made sensitive

for a vector by transforming such a vector by the linear transformation G. Otherwise
every "slot" which is sensitive for vectors can be made sensitive for covectors by using
the linear transformation G−1.
Summarized: If there is chosen some fixed inner product, it is enough to speak about
p-tensors. Out of every p-tensor there can be constructed some type

(r
s
)
-tensor, with

r + s = p.

Conclusion(s): (IMPORTANT)
A FIXED CHOSEN inner product (·, ·) on V leads to:

• calculationswith the usual rules of an inner product, replace all angular hooks
< ·, · > by round hooks (·, ·),

• correct expressions, if the hats ·̂ are dropped in all the formules of paragraph
2.8.1 till 2.8.10.

Some explanations by examples.
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Example(s): 2.8.3

• A 1-tensor is of the form x 7→ (x, a). The covariant components of a are a j =

(a, e j). The contravariant components are ai = (ei, a).
• A2-tensorR has the representationR(x,y) = (x,Ry) = (R∗x,y) for all x,y ∈ V.

Here is R : V → V a linear transformation and R∗ is the adjoint transforma-
tion of R. There are covariant components Ri j = R(ei, e j), contravariant com-
ponents Ri j = R(ei, e j) and two types mixed components R·ki· = R(ei, ek) and
Rl·
· j = R(el, e j). There holds R·ki· = gkjRi j = gilRlk, et cetera. The covariant

components of the image of Rx are given by Ri jx j, et cetera.
• The covariant components of the 4-tensor out of paragraph 2.8.9 are Θhijk =

Θ(Geh,Gei, e j, ek) = ghlgimΘlm··
·· jk . With the components of G the indices can

be "lifted and lowered", let them go from covariant to contravariant and vice
versa. �

Section 2.9 Mathematical interpretation of the "En-
gineering tensor concept"

Starting Point(s):

• A n-dimensional Vector Space V over R.

Comment(s): 2.9.1

• Out of the linear Algebra, the 1-dimensional blocks of numbers (the rows and
columns) and the 2-dimensional blocks of numbers (the matrices) are well-
known. Within the use of these blocks of numbers is already made a differ-
ence between upper and lower indices. Herewill be considered q-dimensional
blocks of numbers with upper, lower or mixed indices. These kind of "super
matrices" are also called "holors"1. For instance the covariant components of
a 4-tensor leads to a 4-dimensional block of numbers with lower indices.

A holor is a mathematical entity that is made up of one or more independent quantities.1
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Notation(s):

• T0
0(Rn) a long-winded notation for R.

• T1
0(Rn) = Rn is the Vector Space of all columns of length n.

• T0
1(Rn) = Rn is the Vector Space of all rows of length n.

• T2
0(Rn) = Rn×n is the Vector Space of all the n×n-matrices with upper indices.

• T1
1(Rn) = Rn

n is the Vector Space of all the n × n-matrices with mixed indices.

• T0
2(Rn) = Rn×n is the Vector Space of all the n×n-matrices with lower indices.

• T1
2(Rn) is the Vector Space of all the 3-dimensional cubic matrices with one

upper index and two lower indices.

• Tr
s(Rn), with r, s ∈ {0, 1, 2, · · ·}fixed, is theVector Space of all (r + s)-dimensional

holors with s lower indices and r upper indices.

Comment(s): 2.9.2

• The Vector Space Tr
s(Rn) over R is of dimension n(r+s) and is isomorf with

Rn(r+s) . If for instance the indices are lexicographic ordered then an identi-
fication with Rn(r+s) can be achieved.

Notation(s):

• The set of all bases of V is notated by Bas(V).

Comment(s): 2.9.3

• In the following definitions are given alternative definitions of tensors. A ten-
sor will be defined as a transformation of Bas(V) to Tr

s(Rn) for certain r and
s. This transformation will be such that if the action on one basis is known,
that the action on another basis can be calculated with the use of transition
matrices. In other words, if the holor with respect to a certain basis is known,
then the holors with respect to other bases are known.
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Definition 2.9.1 A 0-tensor,
(0
0
)
-tensor is a transformation of Bas(V) to T0

0(Rn)
which adds to every basis an unique number. �

Notation(s):

• The notation T0
0(V) is also used for R.

Definition 2.9.2 A covariant 1-tensor,
(0
1
)
-tensor or covector is a transformation

F : Bas(V)→ T0
1(Rn) with the property

F({ei}) = [x j]
F({ei′}) = [x j′]

}
⇒ x j′ = A j

j′x j.

�

Comment(s): 2.9.4

• With every covariant 1-tensor corresponds a linear function x̂ = xîe
i = xi′̂e

i′

which is independent of the chosen basis.

Notation(s):

• The notation T0
1(V) is also used for V∗.

Definition 2.9.3 A contravariant 1-tensor,
(1
0
)
-tensor or vector is a transformation

F : Bas(V)→ T1
0(Rn) with the property

F({ei}) = [x j]
F({ei′}) = [x j′]

}
⇒ x j′ = A j′

j x j.

�

Comment(s): 2.9.5

• With every contravariant 1-tensor corresponds a vector x = xiei = xi′ei′

which is independent of the chosen basis.
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Notation(s):

• The notation T1
0(V) is also used for V.

Definition 2.9.4 A covariant 2-tensor or
(0
2
)
-tensor is a transformation

S : Bas(V)→ T0
2(Rn) with the property

S({ei}) = [Tkl]
S({ei′}) = [Tk′l′]

}
⇒ Tk′l′ = Ak

k′A
l
l′Tkl.

�

Comment(s): 2.9.6

• With every covariant 2-tensor corresponds a bilinear function S = Tkl̂e
k
⊗ê l =

Tk′l′̂e
k′
⊗ ê l′ which is independent of the chosen basis.

Definition 2.9.5 A contravariant 2-tensor or
(2
0
)
-tensor is a transformation

S : Bas(V)→ T2
0(Rn) with the property

S({ei}) = [Tkl]
S({ei′}) = [Tk′l′]

}
⇒ Tk′l′ = Ak′

k Al
l′T

kl.

�

Comment(s): 2.9.7

• After the choice of an inner product, there exists a correspondence between a
contravariant 2-tensor and a bilinear function. The bilinear function belonging
to S is given by S = Tkl̂ek ⊗ êl = Tk′l′ êk′ ⊗ êl′ and is independent of the chosen
basis.
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Definition 2.9.6 A mixed 2-tensor or
(1
1
)
-tensor is a transformation

S : Bas(V)→ T1
1(Rn) with the property

S({ei}) = [Tk
l ]

S({ei′}) = [Tk′
l′ ]

⇒ Tk′
l′ = Ak′

k Al′
l Tk

l .

�

Comment(s): 2.9.8

• After the choice of an inner product, there exists a correspondence between a
mixed 2-tensor and a bilinear function. The bilinear function belonging to S is
given by S = Tk

l êk ⊗ ê l = Tk′
l′ êk′ ⊗ ê l′ and is independent of the chosen basis.

• Every mixed 2-tensor corresponds with a linear transformation T : V → V,
defined by Tx = Tk

l < ê l, x > ek which is independent of the chosen basis. For
this correspondence is no inner product needed.

Definition 2.9.7 A covariant p-tensor or
(0
p
)
-tensor is a transformation

S : Bas(V)→ T0
p(Rn) with the property

S({ei}) = [Ti1···ip]
S({ei′}) = [Ti′1···i

′
p
]

⇒ Ti′1···i
′
p

= Ai1
i′1
· · ·Aip

i′p
Ti1···ip .

�

Definition 2.9.8 A contravariant q-tensor or
(q
0
)
-tensor is a transformation

S : Bas(V)→ Tq
0(Rn) with the property

S({ei}) = [Ti1···ip]
S({ei′}) = [Ti′1···i

′
p]

}
⇒ Ti′1···i

′
p = A

i′1
i1
· · ·Ap

ip
Ti1···ip .

�
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Definition 2.9.9 Amixed (r + s)-tensor, contravriant of the order r and covariant
of the order s, or

(r
s
)
-tensor is a transformation S : Bas(V) → Tr

s(Rn) with the
property

S({ei}) = [Tk1···kr
l1···ls

]

S({ei′}) = [T
k′1···k

′
r

l′1···l
′
s

]

⇒ T
k′1···k

′
r

l′1···l
′
s

= A
k′1
k1
· · ·Ak′r

kr
Al1

l′1
· · ·Als

l′s
Tk1···kr

l1···ls
.

�

Comment(s): 2.9.9

• A
(r
s
)
-tensor is called contravariant of the order r and covariant of the order s.

• The preceding treated mathematical operations, such as addition, scalar mul-
tiplication, multiplication and contraction of tensors are calculations which
lead to the same new tensor independent whatever basis is used. In other
words, the calculations can be done on every arbitrary basis. Such a calcula-
tion is called "tensorial". The calculations are invariant under transformations
of coordinates.

• To describe a tensor it is enough to give a holorwhich respect to a certain basis.
With the definitions in this paragraph the holors with respect to other bases
can be calculated.

Some examples.
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Example(s): 2.9.1

• ◦ Condider the transformation F1 which adds to every basis of V thematrix
[δk

m]. The question becomes if F1 is a mixed 2-tensor?
There are chosen two bases {ei} and {ei′} of V and there is assumed that
F1({ei}) = [δk

m] and F1({ei′}) = [δk′
m′]. Then holds

δk′
m′ = Ak′

k Ak
m′ = Ak′

k Am
m′δ

k
m′

and there follows that F1 is a mixed 2-tensor. This can also be seen in
matrix language. The argument is then:
There holds I′, = A′ I A, for every invertible n × n-matrix A,.
F1 is the Kronecker tensor.

◦ Condider the transformation F2 which adds to every basis of V thematrix
[δkm]. The question becomes if F2 is a covariant 2-tensor?
Holds "I,, = (A,)T I A," forevery invertible n × n-matrix? The answer is
"no", so F2 is not a covariant 2-tensor.

◦ Condider the transformation F3 which adds to every basis of V thematrix
[δkm]. The question becomes if F3 is a contravariant 2-tensor?
answer is "no", because "I,, = A′ I (A′)T" is not valid for every invertible
n × n-matrix.

◦ If there should be a restriction to orthogonal transition matrices then F2
and F3 should be 2-tensors.
The to the mixed 2-tensor F1 belonging linear transformation from V to
V is given by x 7→< ê i, x > ei = xiei = x, the identitiy map on V.

• Consider the transformation F which adds to every basis of V the matrix
diag(2, 1, 1). The question becomes if F is a covariant, contravariant or a
mixed 2-tensor? It is not difficult to find an invertible matrix A such that
diag(2, 1, 1) 6= A−1 diag(2, 1, 1) A. So it follows immediately that F is not a
2-tensor of the type as asked. �
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Example(s): 2.9.2

• ◦ Consider a mixed 2-tensor φ. Write

φ({ei}) = [qk
l ] = Q.

Is the transformation α : Bas(V)→ R, defined by

α({ei}) = ql
l = trace(Q),

a scalar? If {ei} and {ei′} are two arbitrary basis of V and φ({ei}) = qk
l and

φ({ei′}) = qk′
l′ then holds

qk′
l′ = Al

l′A
k′
k qk

l ,

such that

ql′
l′ = Al

l′A
l′
k qk

l = δl
kδ

k
l = δl

l,

such that α({ei}) = α({ei′}). α is obviously a scalar. The argument in the
matrix language should be that trace((A,)−1 Q A,) = trace(Q′, ) for every
invertible n × n-matrix A,.

◦ Consider a covariant 2-tensor ψ. Write

ψ({ei}) = [qkl] = Q.

Is the transformation β : Bas(V)→ R, defined by

β({ei}) =

n∑
l=1

qll = trace(Q),

a scalar? This represents the question if trace((A,)T Q A,) = trace(Q,,) for
every invertible n × n-matrix A,? The answer is "no", so β is no scalar. �
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Example(s): 2.9.3

• Given are the tensors qi j, qi j, qi
j. Is the change of indices a tensor operation or

in matrix language: "Is the transposition of a matrix a tensor operation?" For
matrices with mixed indices this is not the case, but for matrices with lower or
upper indices this is a tensor operation. The explanation will follow in matrix
language.
? Mixed indices: Notate Q = [qi

j] and Q′, = [qi′
j′]. Then holds

Q′, = (A,)−1 Q A,. Hereby follows that (Q′, )T = (A,)T QT (A,)−T. There
follows that (Q′, )T

6= (A,)−1 QT A,, in general, so the transposition of a
matrix with mixed components is not a tensor operation.

? Lower indices: Notate Q = [qi
j] and Q,, = [qi′ j′]. Then holds

Q,, = (A,)T Q A,. Hereby follows that (Q,,)T = (A,)T QT A,. This is a tensor
operation!

? Upper indices: Analogous as in the case of the lower indices.
• Given are the tensors qi j, qi j, qi

j. Is the calculation of a determinant of a matrix
is a tensor operation? To matrices with mixed indices it is a tensor operation,
but to matrices with lower or upper indices it is not. This means that the
calculation of a determinant of a matrix with mixed indices defines a scalar.
Because det(Q′, ) = det((A,)−1 Q A,) = det(Q), but det(Q,,) 6= det((A,)T Q A,),
in general. �

Example(s): 2.9.4

• Let n = 3. Given are the contravariant 1-tensors xi and y j. Calculate the cross
product z1 = x2 y3

− x3 y2, z2 = x3 y1
− x1 y3 and z3 = x1 y2

− x2 y1. This is
not a tensor operation, so zk is not a contravariant 1-tensor. In other words: zk

is not a vector. To see that there is made use of the following calculation rule

∀U,V ∈ R3
∀S ∈ R3

3,S invertible (SU) × (SV) = det(S) S−T (U × V). (2.3)

If Z′ = A′Z then is zk a vector. So the cross product is vector if (A′X)× (A′Y) =
A′(X × Y). Because of the calculation rule 2.3 holds that (A′X) × (A′Y) =
det(A′)(A′)−T(X × Y), such that the cross product is not a tensor operation.
But if the matrices A′ are limited to the orthogonal matrices with determinant
equal to 1, then the cross product is a tensor operation. If there is used an
orthogonal matrix with determinant equal to −1, then there appears a minus
sign after the basis transition. This phenomenon requires the physicists to call
the cross product the mysterious title "axial vector". �
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Example(s): 2.9.5

• Let xi and y j be contravariant 1-tensors. The arithmetic constructions xiy j and
xiy j
− y jxi deliver contravariant 2-tensors.

• If xi, y j, qi j, qi
j and qi j are tensors then are xiqi j, q j

i y j, qi jq
j
k, et cetera, tensors.

These operations are to interpret geometrical as linear transformations on a
covector, vector or as the composition of 2 linear transformations. �

Section 2.10 Symmetric and Antisymmetric Tensors

Starting Point(s):

• A n-dimensional Vector Space V over R.

Definition 2.10.1 A permutation σ of order k, k ∈N, is a bijective transformation
from {1, · · · , k} to {1, · · · , k}. A permutation σ is called odd if σ is realised with an
odd number of pairwise changes. A permutation σ is called even if σ is realised
with an even number of pairwise changes. If a permutation is odd, there is written
sgn(σ) = −1. If a permutation is even, there is written sgn(σ) = 1. The set of
permutations of order k is notated by Sk. �

Comment(s): 2.10.1

• The number of elements out of Sk is equal to k!.

Definition 2.10.2 Let φ ∈ Tk(V)( = T0
k (V)). The tensor φ is called symmetric

if for every number of k vectors v1, · · · ,vk ∈ V and for every σ ∈ Sk holds that
φ(v1, · · · ,vk) = φ(vσ(1), · · · ,vσ(k)). The tensor φ is called antisymmetric if for every
number of k vectors v1, · · · ,vk ∈ V and for every σ ∈ Sk holds that φ(v1, · · · ,vk) =
sgn(σ)φ(vσ(1), · · · ,vσ(k)). �
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Comment(s): 2.10.2

• If k > n, then is every antisymmetric tensor equal to the tensor which adds 0
tot every elemenst of its domain.

• The change of an arbitrary pair of "input"-vectors has no influence to a sym-
metric tensor, it gives a factor −1 to an antisymmetric tensor.

• The sets of the symmetric and the antisymmetric k-tensors are subspaces of
Tk(V).

Notation(s):

• The Vector Space of the symmetric k-tensors is notated by
∨k(V).

• The Vector Space of the antisymmetric k-tensors is notated by
∧k(V).

• The agreement is that
∨0(V) =

∧0(V) = R and
∨1(V) =

∧1(V) = V∗.

Definition 2.10.3 For every f̂, ĝ ∈ V∗ the 2-tensor f̂ ∧ ĝ on V is defined by(
f̂ ∧ ĝ

)
(x,y) = det

(
< f̂, x > < f̂,y >
< ĝ, x > < ĝ,y >

)
.

�

Lemma 2.10.1 The 2-tensor f̂ ∧ ĝ is antisymmetric. �

Notice(s): 2.10.1

• f̂ ∧ ĝ = −ĝ ∧ f̂, f̂ ∧ f̂ = 0 and
(
f̂ + λĝ

)
∧ ĝ = f̂ ∧ ĝ for all λ ∈ R.

• For every basis {ei} in V the set { ê i
∧ ê j

| 1 ≤ i < j ≤ n} is linear independent.
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Definition 2.10.4 For every f̂1, · · · , f̂k ∈ V∗ the k-tensor f̂1∧· · ·∧ f̂k on V is defined
by

(
f̂1 ∧ · · · ∧ f̂k

)
(x1, · · · , xk) = det


< f̂1, x1 > · · · < f̂1, xk >

...
...

< f̂k, x1 > · · · < f̂k, xk >

.
�

Lemma 2.10.2 The k-tensor f̂1 ∧ · · · ∧ f̂k is antisymmetric. �

Notice(s): 2.10.2

• f̂1 ∧ · · · ∧ f̂k = 0 if and only if the set { f̂1, · · · , f̂k } is linear dependent.

Lemma 2.10.3 For every basis {ei} of V is the set

{̂e j1 ∧ · · · ∧ ê jk | 1 ≤ j1 < j2 < · · · < jk ≤ n}

a basis of
∧k(V). �

Clarification(s): 2.10.1

• Every antisymmetric k-tensor t on V can be written by

t =
∑

1≤i1 < ···< ik ≤n
ti1···ik ê

i1 ∧ · · · ∧ ê ik , (2.4)

with ti1···ik = t(ei1 , · · · eik).

Consequence(s):

• The dimension of
∧k(V) is equal to

(
n
k

)
.
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Definition 2.10.5 For every f̂, ĝ ∈ V∗ the 2-tensor f̂ ∨ ĝ = f̂ ĝ on V is defined by(
f̂ ĝ

)
(x,y) = perm

(
< f̂, x > < f̂,y >
< ĝ, x > < ĝ,y >

)
.

�

Comment(s): 2.10.3

• In this definition ismade use of the operator perm, which is called permanent.
Perm adds a number to a matrix. The calculation is almost the same as the
calculation of a determinant, the only difference is that there stays a plus sign
for every form instead of alternately a plus or minus sign.

Lemma 2.10.4 The 2-tensor f̂ ĝ is symmetric. �

Notice(s): 2.10.3

• f̂ ĝ = ĝ f̂.
• f̂ ĝ = 0 ⇔

(
f̂ = 0 and/or ĝ = 0

)
.

•

(
f̂ + λĝ

)
∨ ĝ = f̂ ∨ ĝ + λ ĝ ∨ ĝ = f̂ ĝ + λ ĝ ĝ for all λ ∈ R.

• For every basis {ei} of V is the set { ê i ê j
| 1 ≤ i ≤ j ≤ n} linear independent.

Definition 2.10.6 For every f̂1, · · · , f̂k ∈ V∗ the k-tensor f̂1 · · · f̂k on V is defined by

(
f̂1 · · · f̂k

)
(x1, · · · , xk) = perm


< f̂1, x1 > · · · < f̂1, xk >

...
...

< f̂k, x1 > · · · < f̂k, xk >

.
�

Lemma 2.10.5 The k-tensor f̂1 · · · f̂k is symmetric. �
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Notice(s): 2.10.4

• The order in f̂1 · · · f̂k is not of importance, another order gives the same sym-
metric k-tensor.

• f̂1 · · · f̂k = 0 if and only if there exists an index j such that f̂k = 0.

Lemma 2.10.6 For every basis {ei} of V is the set

{̂e j1 · · · ê jk | 1 ≤ j1 ≤ · · · ≤ jk ≤ n}

a basis of
∨k(V). �

Clarification(s): 2.10.2

• Every symmetric k-tensor τ on V can be written as

τ =
∑

1≤i1 ≤ ··· ≤ ik ≤n
τi1···ik

ê i1 · · · ê ik

µi1···ik
,

with τi1···ik = τ(ei1 , · · · , eik) and µi1···ik =
(
ê i1 · · · ê ik

)
(ei1 , · · · , eik). In this last

expression the Einstein summation convention is not applicable!

Consequence(s):

• The dimension of
∨k(V) is equal to

(
n + k − 1

k

)
.

Example(s): 2.10.1

• Them-th derivative of a sufficiently enoughdifferentiable function f : Rn
→ R

is a symmetric covariant m-tensor onRn. This tensor is noated byDm j and the
components are

∂m f (0)
∂(x1)i1 · · · ∂(xn)im

with i1 + · · · + im = m wit respect to the basis { ∂
∂ xi }. �
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Definition 2.10.7 The transformation S : Tk(V)→ Tk(V) defined by

(Sφ)(v1, · · · ,vk) =
1
k !

∑
σ∈Sk

φ(vσ1 , · · · ,vσk)

is called the symmetrizing transformation and the transformation A : Tk(V) →
Tk(V) defined by

(Aφ)(v1, · · · ,vk) =
1
k !

sgn(σ)
∑
σ∈Sk

φ(vσ1 , · · · ,vσk)

is called the antisymmetrizing transformation. �

Notice(s): 2.10.5

• The transformations S and A are linear and they satisfy S2 = S and A2 = A.
These relations express thatA andA are projections. The images are given by

S(Tk(V)) =
∨k(V) and A(Tk(V)) =

∧k(V).

• A
(
ê i1 ⊗ · · · ⊗ ê ik

)
= 1

k ! ê
i1 ∧ · · · ∧ ê ik .

• S
(
ê i1 ⊗ · · · ⊗ ê ik

)
= 1

k ! ê
i1 · · · ê ik .

• A 2-tensor can always be written as the sum of a symmetrical and an antisym-
metrical 2-tensor. Consider the covariant components of a 2-tensor φ on V,
φi j = 1

2 (φi j + φ ji) + 1
2 (φi j − φ ji).

• For k > 2 then
(
n
k

)
+

(
n + k − 1

k

)
< nk, such that the Vector Spaces∨k(V) and

∧k(V) together don’t span the space Tk(V).

Definition 2.10.8 If η ∈
∧k(V) and ζ ∈

∧l(V) then the tensor η ∧ ζ ∈
∧k+l(V) is

defined by

η ∧ ζ =
(k + l) !

k ! l !
A(η ⊗ ζ).

�

Comment(s): 2.10.4

• If k = l = 1 then η ∧ ζ = η ⊗ ζ − ζ ⊗ η, just conform Definition 2.10.3.
• If α is a scalar then holds α ∧ η = αη.
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Theorem 2.10.1 For η ∈
∧k(V), ζ ∈

∧l(V), θ ∈
∧m(V) and ω ∈

∧m(V) holds that

η ∧ ζ = (−1)(kl) ζ ∧ η

η ∧ (ζ ∧ θ) = (η ∧ ζ) ∧ θ

(η + ω) ∧ ζ = η ∧ ζ + ω ∧ ζ.

�

Clarification(s): 2.10.3

• The proof of the given theorem is omitted. The proof is a no small accounting
and combinatorial issue, which can be found in
(Abraham et al., 2001) ,Manifolds, · · ·, page 387.

• The practical calculations with the wedge product ∧ are done following obvi-
ous rules. For instance if k = 2, l = 1 and η = α û∧ ŵ + β v̂∧ x̂, ζ = γ x̂ + δ ẑ
, dan geldt η ∧ ζ = αγ û ∧ ŵ ∧ x̂ + αδ û ∧ ŵ ∧ ẑ + βδ v̂ ∧ x̂ ∧ ẑ.
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Example(s): 2.10.2

• Consider R2 with basis {e1, e2}, given by e1 =

(
1
0

)
and e1 =

(
0
1

)
. The associ-

ated dual basis is given by { ê 1, ê 2
}. The following notations are here employed

e1 =
∂
∂x
, e2 =

∂
∂y

and ê 1 = dx, ê 2 = dy.

The Vector Space
∧1(R2) = (R2)∗ is 2-dimensional and a basis of this space

is given by {dx,dy}. Let α̂, β̂ ∈
∧1(R2) and expand these covectors to their co-

variant components with respet to the basis {dx,dy}. So α̂ = α1dx + α2dy,

with α1 = α̂
∂
∂x

and α2 = α̂
∂
∂y

. On the same way β̂ = β1dx + β2dy and rhere

follows that

α̂ ∧ β̂ = (α1dx + α2dy) ∧ (β1dx + β2dy)

= α1β2dx ∧ dy + α2β1dy ∧ dx = (α1β2 − α2β1)dx ∧ dy.

Let a =

(
a1

a2

)
, b =

(
b1

b2

)
∈ R2. The numbers a1, a2, b1 and b2 are the con-

travariant components of a and b with respect tot the basis { ∂
∂x
,
∂
∂y
}. There

holds that

(dx ∧ dy)(a,b) =< dx, a >< dy,b > − < dx,b >< dy, a >= α1β2 − α2β1.

This number is the oriented surface of the parallelogram spanned by the vec-
tors a and b.
The Vector Space

∧2(R2) is 1-dimensional and a basis is given by {dx∧ dy}. �
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Example(s): 2.10.3

• Consider R3 with basis {e1, e2, e3} given by e1 =
∂
∂x

= (1, 0, 0)T, e2 =
∂
∂y

=

(0, 1, 0)T and e3 =
∂
∂z

= (0, 0, 1)T. The corresponding dual basis is notated by
{dx,dy,dz}.
The basis of the 3-dimensional Vector Space

∧1(R3) is {dx,dy,dz}. The basis
of the 3-dimensional Vector Space

∧2(R3) is {dx ∧ dy,dx ∧ dz,dy ∧ dz}, and
the basis of the 1-dimensional Vector Space

∧3(R3) is {dx ∧ dy ∧ dz}.
Let α, β ∈

∧1(R3) then α = α1dx + α2dy + α3dz and β = β1dx + β2dy + β3dz
and α ∧ β ∈

∧2(R3). There holds that

α∧ β = (α1β2 − α2β1)dx∧ dy + (α1β3 − α3β1)dx∧ dz + (α2β3 − α3β2)dy∧ dz.

Let a = (a1, a2, a3)T, b = (b1, b2, b3)T, c = (c1, c2, c3)T
∈ R3 then holds

(dy ∧ dz)(a,b) = a2b3
− b2a3.

This number is the oriented surface of the projection on the y, z-plane of the
parallelogram spanned by the vectors a and b. In addition holds that

(dx ∧ dy ∧ dz)(a,b, c) =

(dx ⊗ dy ⊗ dz)(a,b, c) + (dy ⊗ dz ⊗ dx)(a,b, c) +

(dz ⊗ dx ⊗ dy)(a,b, c) − (dy ⊗ dx ⊗ dz)(a,b, c) −

(dx ⊗ dz ⊗ dy)(a,b, c) − (dz ⊗ dy ⊗ dx)(a,b, c) =

a1b2c3 + a2b3c1 + a3b1c2
− a2b1c3

− a1b3c2
− a3b2c1.

This number is the oriented volume of the parallelepiped spanned by the vec-
tors a,b and c. �
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Example(s): 2.10.4

• Consider R4 with basis {e0, e1, e2, e3} given by e0 =
∂
∂t

= (1, 0, 0, 0)T, e1 =

∂
∂x

= (0, 1, 0, 0)T, e2 =
∂
∂y

= (0, 0, 1, 0)T and e3 =
∂
∂z

= (0, 0, 0, 1)T. The

corresponding dual basis is notated by {dt, dx, dy, dz}.
The basis of the 4-dimensional Vector Space

∧1(R4) is {dt, dx, dy, dz}.
The basis of the 6-dimensional Vector Space

∧2(R4) is
{dt ∧ dx, dt ∧ dy, dt ∧ dz, dx ∧ dy, dx ∧ dz, dy ∧ dz}.
The basis of the 4-dimensional Vector Space

∧3(R4) is
{dt ∧ dx ∧ dy, dt ∧ dx ∧ dz, dt ∧ dy ∧ dz, dx ∧ dy ∧ dz}.
The basis of the 1-dimensional Vector Space

∧4(R4) is {dt ∧ dx ∧ dy ∧ dz}.
Let α = α01dt∧dx +α12dx∧dy +α13dx∧dz ∈

∧2(R4) and β = β0dt + β2dy ∈∧1(R4) then α ∧ β ∈
∧3(R4) and there holds that

α∧ β = (α01β2 + α12β0)dt∧ dx∧ dy + α13β0dt∧ dx∧ dz − α13β2dx∧ dy∧ dz.

Let γ = γ23dy ∧ dz ∈
∧2(R4) then α ∧ γ ∈

∧4(R4) and there holds that

α ∧ γ = α01 γ23 dt ∧ dx ∧ dy ∧ dz.

Let a,b, c,d ∈ R4 and these vectors are expanded to their contravariant com-

ponents with respect to the basis { ∂
∂t
,
∂
∂x
,
∂
∂y
,
∂
∂z
}. There holds that

(dt ∧ dz)(a,b) = a0b3
− b0a3.

This number is the oriented surface of the projection on the t, z-plane of the
parallelogram spanned by a and b.

(dt ∧ dy ∧ dz)(a,b, c) = det


a0 b0 c0

a2 b2 c2

a3 b3 c3


is the oriented 3-dimensional volumeof the projection on the t, y, z-hyperplane
of the parallelepiped spanned by a,b and c. Further is

(dt ∧ dx ∧ dy ∧ dz)(a,b, c,d) = det(a,b, c,d)

the 4-dimensional volume of the hyperparallelepiped spanned by
a,b, c and d. �
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Comment(s): 2.10.5

• Through the choice of aµ ∈
∧n(V) is introduced an oriented volume onV. The

number µ(v1, · · · ,vn) gives the volume of the parallelepiped spanned by the
vectors v1, · · · ,vn. Because the Vector Space

∧n(V) is one dimensional, every
two choices of µ differ some multiplicative constant. If there is defined an in-
ner product on V, it is customary to choose µ such that for orthonormal bases
{ei} onV holds that µ(e1, · · · , en) = ±1. A basis with the plus-sign(minus-sign)
is called positive(negative) oriented.

Section 2.11 Vector Spaces with a oriented volume

Starting Point(s):

• A n-dimensional Vector Space V over R.
• An oriented volume µ on V.

Definition 2.11.1 Let k ∈ {0, · · · , (n−1)} and a1, · · · , a(n−k) ∈ V, thenµ a1 · · · a(n−k) ∈∧k(V) is defined by

(µ a1 · · · a(n−k))(x1, · · · , xk) = µ(a1, · · · , a(n−k), x1, · · · , xk).

�
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Comment(s): 2.11.1

• If for some basis {ei} on V holds that µ(e1, · · · , en) = 1 then

(µ a1 · · · a(n−k))(x1, · · · , xk) = det


a1

1 · · · a1
(n−k) x1

1 · · · x1
k

...
...

...
...

an
1 · · · an

(n−k) xn
1 · · · xn

k

,
because of the representation given in Clarification 2.4, where ai

j =< ê i, a j >,

for i = 1, · · · ,n, and j = 1, · · · , (n− k), and xi
j =< ê i, x j >, for i = 1, · · · ,n, and

j = 1, · · · , k. Developping this determinant to the first (n − k) columns, then
becomes clear that (µ a1 · · · a(n−k))(x1, · · · , xk) is writable as a linear
combination of

(n
k
)

k × k determinants

det


xi1

1 · · · xi1
k

...
...

xik
1 · · · xik

k

,
with 1 ≤ i1 < i2 < · · · < ik ≤ n.
This result means that the antisymmetric k-tensor µ a1 · · · a(n−k) is a
linear combination of the

(n
k
)

k-tensors ê i1 ∧ · · · ∧ ê ik . This result was to expect
because of the fact that {̂e i1 ∧ · · · ∧ ê ik} is a basis of

∧k(V).
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Example(s): 2.11.1

• Consider R3 with basis {e1, e2, e3}, given by e1 = (1, 0, 0)T, e2 = (0, 1, 0)T and
e3 = (0, 0, 1)T. Define the volume µ on V by µ = ê 1

∧ ê 2
∧ ê 3. Then holds

that µ(e1, e2, e3) = 1.
Let a,b ∈ R3 then µ a b ∈

∧1(R3) and there holds that

(µ a b)(x) = det


a1 b1 x1

a2 b2 x2

a3 b3 x3

 = (a2b3
−a3b2) x1 + (a3b1

−a1b3) x2 + (a3b1
−a1b3) x3,

such that

µ a b = (a2b3
− a3b2) ê 1 + (a3b1

− a1b3) ê 2 + (a3b1
− a1b3) ê 3.

In addition µ a ∈
∧2(R3) and there holds that

(µ a)(x,y) = det


a1 x1 y1

a2 x2 y2

a3 x3 y3


= a1det

 x2 y2

x3 y3

 + a2det
 x3 y3

x1 y1

 + a3det
 x1 y1

x2 y2

,
or

µ a = a1 ê 2
∧ ê 3 + a2 ê 3

∧ ê 1 + a3 ê 1
∧ ê 2.

�

Notice(s): 2.11.1

• If for the basis {ei} of V holds that µ(e1, · · · , en) = 1, then holds that
µ = ê 1

∧ · · · ∧ ên.
Moreover holds for every k ∈ {1, · · · , (n − 1)},

µ e 1
· · · e k = ê (k+1)

∧ · · · ∧ ên.

Furthermore holds that

µ ei1 · · · eik = (−1)ν ê j1 ∧ · · · ∧ ê j(n−k) .

The j1, · · · , j(n−k) are the indices which are left over and ν is the amount of
permutations to get the indices i1, · · · , ik, j1, · · · , j(n−k) in their natural order
1, 2, · · · ,n.
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Section 2.12 The Hodge Transformation

Starting Point(s):

• A n-dimensional Vector Space V over R.
• An oriented volume µ on V such that for orthonormal bases {ci} of V holds

that µ(c1, · · · , cn) = ±1.
• A positive oriented basis {ei}.

Clarification(s): 2.12.1

• The startingpoint of an inner product means that the inner product is sym-
metric, see Def. 2.5.1 i. In this paragraph it is of importance.

Comment(s): 2.12.1

• With the help of the inner product there can bemade a bijection betweenV and
V∗. This bijection is notated by G, see Theorem 2.5.1. For every a,b, x,y ∈ V
there holds that

(Ga ∧ Gb)(x,y) =
(
â ∧ b̂

)
(x,y) = det

(
(a, x) (a,y)
(b, x) (b,y)

)
and for a1, · · · , ak, x1, · · · , xk ∈ V there holds that

(Ga1 ∧ · · · ∧ Gak)(x1, · · · xk) =(
â1 ∧ · · · ∧ âk

)
(x1, · · · , xk) =

det


(a1, x1) · · · (a1, xk)

...
...

(ak, x1) · · · (ak, xk)

.
• Because of the fact that

(n
k
)

=
( n
n−k

)
, there holds that

dim
(∧k(V)

)
= dim

(∧(n−k)(V)
)
. Through the choice of the inner product and

the volume it is apparently possible to define an isomorphism between∧k(V) and
∧(n−k)(V).
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Definition 2.12.1 Let a1, · · · , ak ∈ V.
The Hodge transformation ∗ :

∧k
⇒

∧(n−k)(V) is defined by{
k = 0 : ∗1 = µ, followed by linear expansion,
0 < j ≤ n : ∗( â 1

∧ · · · ∧ â k) = µ a1 · · · ak, followed by linear expansion.

�

Example(s): 2.12.1

• Consider R =
∧0 and let α ∈ R then ∗α = αµ ∈

∧n.
• Consider R3 and the normal inner product and volume then holds that

∗

(
ê 1
∧ ê 2) = µ e1 e2 = ê 3.

�

Notice(s): 2.12.1

• Consider an orthonormal basis {ei} of V, such that µ(e1, · · · , en) = 1. There
is noted that the belonging Gram matrix is a diagonal matrix, at the first p
diagonalelements have value 1 and the rest have value (−1). The number p is
equal to the signature of the inner product, see Theorem 2.7.1. There holds
that:

∗

(
ê i1 ∧ · · · ∧ ê ik

)
= (−1)r

∗

(
e i1 ∧ · · · ∧ e ik

)
=

(−1)rµ e i1 · · · e ik =

(−1)(r+ν)̂e j1 ∧ · · · ∧ ê j(n−k) ,

with r is the number of negative values in {(ei1 , ei1), · · · , (eik , eik)}, see 2.2 and ν
is the amount of permutations to get the indices i1, · · · , ik, j1, · · · , j(n−k) in their
natural order 1, 2, · · · ,n.
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Example(s): 2.12.2

• Consider R2. Define the inner product on R2 by

(X,Y) = x1y1 + x2y2.

Let { ∂∂x ,
∂
∂y } be the standard basis of R2 and notate the corresponding dual

basis by {dx, dy}. The same notation as used in Example 2.10.2. Notice that
the standard basis is orthonormal. Define the oriented volume µ on V by µ =
dx ∧ dy and notice that µ( ∂∂x ,

∂
∂y ) = 1. The isomorphism G is given by

G = dx ⊗ dx + dy ⊗ dy.

Let α ∈
∧0(R2) then holds that

∗α = α(∗1) = αµ = αdx ∧ dy ∈
∧2(R2).

Let α ∈
∧1(R2) then holds that

∗α = ∗(α1dx + α2dy) = α1 ∗ dx + α2 ∗ dy = α1 ∗ dy − α2 ∗ dx =∈
∧1(R2).

Obviously holds that ∗ ∗ α = −α and α ⊥ ∗α.
Let α ∈

∧2(R2) then holds that

∗α = ∗(α12 d ∧ dy) = α12 ∗ (d ∧ dy) = α12 ∈
∧0(R2).
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Example(s): 2.12.3

• Consider R3. The used notations are the same as in Example 2.10.3. Define
the inner product by

G = dx ⊗ dx + dy ⊗ dy + dz ⊗ dz

and the oriented volume µ by µ = dx ∧ dy ∧ dz. There holds that

∗ dx = dy ∧ dz ∗ (dx ∧ dy) = dz

∗ 1 = dx ∧ dy ∧ dz ∗ dy = −dx ∧ dz ∗ (dx ∧ dz) = −dy ∗ (dx ∧ dy ∧ dz) = 1

∗ dz = dx ∧ dy ∗ (dy ∧ dz) = dx

Obviously holds that ∗∗ = I, a property of the Euclidean R3.
Let α = α1dx + α2dy + α3dz and β = β1dx + β2dy + β3dz then holds that

∗(α ∧ β) = (α2β3 − α3β2) dx + (α3β1 − α1β3) dy + (α1β2 − α2β1) dz.

• Consider R4 and see Example 2.10.4.
Define the inner product by

G = dt ⊗ dt − dx ⊗ dx − dy ⊗ dy − dz ⊗ dz

(the Minkowski inner product and the oriented volume µ by µ = dt ∧ dx ∧
dy ∧ dz, then holds that

∗ (dt ∧ dx) = −dy ∧ dz

∗ dt = dx ∧ dy ∧ dz ∗ (dt ∧ dy) = dx ∧ dz

∗ 1 = dt ∧ dx ∧ dy ∧ dz ∗ dx = dt ∧ dy ∧ dz ∗ (dt ∧ dz) = −dx ∧ dy

∗ dy = −dt ∧ dx ∧ dz ∗ (dx ∧ dy) = dt ∧ dz

∗ dz = dt ∧ dx ∧ dy ∗ (dx ∧ dz) = −dt ∧ dy

∗ (dy ∧ dz) = dt ∧ dx

∗ (dt ∧ dx ∧ dy) = dz

∗ (dt ∧ dx ∧ dz) = −dy ∗ (dt ∧ dx ∧ dy ∧ dz) = 1

∗ (dt ∧ dy ∧ dz) = dx

∗ (dx ∧ dy ∧ dz) = dt

�

Note that the inner product has signature (+,−,−,−) or (−,+,+,+). Which signa-
ture is used, is a matter of convention. But today the signature (+,−,−,−) is very
often used, becomes standard.
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Section 2.13 Exercises
1. Let V be a n-dimensional vector space over R with three bases {ei}, {{b f ei′} and
{{b f ei”}.
Let see that

A j′
j A j”

j′ = A j”
j .

2. Let V be a symplectic vector space. Prove that the dimension of V is even and that
axiom (ii) of the inner product can never be satisfied.

3. Prove the inequality of Cauchy-Schwarz, see Lemma 2.5.1.

4. Prove the uniqueness of the signature of the inner product.

5. Prove the identification of V with V∗∗. Indication: define a suitable linear transfor-
mation of V to V∗∗ and prove that this is an isomorphism.
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Section 2.14 RRvH: Identification V and V∗

Notice(s): 2.14.1

• Let U, V and W be vector spaces over R.
• Important to note is that U × V is the cartesian product of sets, not the direct

product of vector spaces. There is no algebraic structure on U × V. Expres-
sions as (x, y) + (z, v) and α (x, y) are meaningless.

• If V is a vector space, there are classes of functions from V × V to W. The
linear maps L(V × V) → W, where V × V is the direct product of vector
spaces ( sometimes notated by V � V) and the bilinear maps hom(V, V ; W),
where V × V is just the cartesian product of sets.
The only map, that is linear and bilinear, is the zero map.

Comment(s): 2.14.1 About the identification of V with V∗∗ and the identification
of V with V∗.

• Identification of V with V∗∗.
Let the linear transformation ψ : V 7→ V∗∗ be defined by (ψ(x))(φ) = φ(x)
then ψ(x) ∈ (V∗)∗ = V∗∗. If (ψ(x))(φ) = 0 for every φ ∈ V∗ then φ(x) = 0 for
every φ ∈ V∗ and there follows that x = 0. So ψ is injective, together with
dimV∗∗ = dimV∗ = dimV = n < ∞ gives that ψ is a bijective map between V
and V∗∗.
Nowhere is used a "structure". Nowhere are used coordinates or something
like an inner product. ψ is called a canonical or natural isomorphism.

• Identification of V with V∗.
The sets V and V∗ contain completely different objects.
There is needed some "structure" to identify V with V∗.

Definition 2.14.1 Let V be a vector space, a bilinear form B : V × V → R is
non-degenerate if{B(x, y) = 0 for all x ∈ V then y= 0 and

B(x, y) = 0 for all y ∈ V then x= 0 .

�

Lemma 2.14.1 If there is a non-degenerate bilinear form B : V × V → R then
the spaces V and V∗ are isomorphic. �
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Proof The bilinear form B : V × V → R defines an isomorphism between V and V∗
by the formula ψ(x) : v → B(v, x) with x ∈ V. B(v, x) ∈ R for every x ∈ V.
To proof that ψ(x) is linear and one-to-one. Linearity is not difficult, it follows out of
the bilinearity of B. ψ(x) is injective, because ifψ(x)(v) = ψ(x)(w) then B(v, x) = B(w, x).
Out of the bilinearity of B follows that B(v − w, x) = 0 for all x. B is non-degenerate,
so v − w = 0 and that means that v = w.
Because furthermore dimV∗ = dimV = n < ∞, ψ(x) is also surjective, so ψ(x) is
bijective. �

Let φ ∈ V∗ and x ∈ V and define the bilinear form B(φ, x) = φ(x).
Be aware of the fact that if B : V∗ × V → R, then{B(φ, ·) ∈ V∗ with φ fixed and

B(·, x) ∈ (V∗)∗ (6= V∗) with x fixed .

Let B is a bilinear form on the cartesian product V × V, so B : V × V → R then{
B(x, ·) ∈ V∗ with x is fixed and
B(·, y) ∈ V∗ with y is fixed .

Example(s): 2.14.1

• Suppose V is the space of real polynomials in the variable x with de-
gree less than or equal 2. A basis of this space is for instance {1, x, x2

},
so e1 = 1, e2 = x and e3 = x2. A basis of the dual space is de-
fined by the covectors { ê 1, ê 2, ê 3

} with ê i(e j) = δi
j, with 1 ≤ i ≤ 3

and 1 ≤ j ≤ 3. Covectors can be computed, for instance by ê i(p) =
αi

1 p(−1) + αi
1 p(0) + αi

1 p(1). After some calculations, the result is that

ê 1(p) = 1 p(0), ê 2(p) = −
1
2

p(−1) +
1
2

p(1), ê 3(p) =
1
2

p(−1) − 1 p(0) +
1
2

p(1).

The covectors are linear functions. An arbitrary covector f̂ ∈ V∗ is given by
f̂ = β1̂e 1 + β2̂e 2 + β3̂e 3 and f̂ (α1e1 + α2e2 + α3e3 ) = β1α1 + β2α2 + β3α3.
But if the basis of V changes, the covectors also change. If for instance
the basis of V is {1, 1 + x, x + x2

} than the basis of covectors becomes
ê 1(p) = 1 p(−1), ê 2(p) = −1 p(−1) + 1 p(0), ê 3(p) =

1
2

p(−1) − 1 p(0) +
1
2

p(1).
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Section 2.15 RRvH: Summary
In this summary is given an overview of the different operations, such as

< ·, · >, ⊗, ∧, ∨, , and ∗ .

• First of all < ·, · >: V∗ × V → R, the Kronecker tensor, see Section 2.3:

< û, x >= û(x).

If x is fixed, then it becomes a linear function on V∗, so a contravariant 1-tensor,
if û is fixed, then a linear function on V, so a covariant 1-tensor.
With this Kronecker tensor are built all other kind of tensors.

• The
(r
s
)
-tensors, see Section 2.8.10:(

a ⊗ b ⊗ · · · ⊗ d ⊗ p̂ ⊗ q̂ ⊗ · · · ⊗ û
)
( v̂, ŵ, · · · , ẑ︸ ︷︷ ︸

r covectors

, f,g, · · · ,k︸ ︷︷ ︸
s vectors

) =

< v̂, a > · · · < ẑ,d >< p̂, f > · · · < û,k >∈ Tr
s(V),

with r vectors a,b, · · · ,d ∈ V and s covectors p̂, q̂, · · · , û ∈ V∗ are given.
The

(r
s
)
-tensor becomes a multiplication of (r + s) real numbers.

• The k-tensor, see Section 2.10.4, can be seen as a construction where the
(r
s
)
-tensors

are used,

(
f̂1 ∧ · · · ∧ f̂k

)
(x1, · · · , xk) = det


< f̂1, x1 > · · · < f̂1, xk >

...
...

< f̂k, x1 > · · · < f̂k, xk >

 ∈
∧k(V),

with f̂1, · · · , f̂k ∈ V∗.
This tensor is antisymmetric.

• Another k-tensor, see Section 2.10.6 can also be seen as a construction where the(r
s
)
-tensors are used,

(
f̂1 ∨ · · · ∨ f̂k

)
(x1, · · · , xk) = perm


< f̂1, x1 > · · · < f̂1, xk >

...
...

< f̂k, x1 > · · · < f̂k, xk >

 ∈
∨ k(V),

with f̂1, · · · , f̂k ∈ V∗. For the calculation of perm, see Comment 2.10.3. Another
notation for this tensor is f̂1 · · · f̂k ( = f̂1 ∨ · · · ∨ f̂k).
This tensor is symmetric.
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• If µ is an oriented volume, see Comment 2.10.5, then

(µ a1 · · · a(n−k))(x1, · · · , xk) = µ(a1, · · · , a(n−k), x1, · · · , xk),

see Definiton 2.11.1.
If µ(e1, · · · , en) = 1 then

(µ a1 · · · a(n−k))(x1, · · · , xk) = det


a1

1 · · · a1
(n−k) x1

1 · · · x1
k

...
...

...
...

an
1 · · · an

(n−k) xn
1 · · · xn

k

,
with ai

j =< ê i, a j >, for i = 1, · · · ,n, and j = 1, · · · , (n − k), and xi
j =< êi, x j >, for

i = 1, · · · ,n, and j = 1, · · · , k, see Comment 2.11.1. This tensor is a linear combina-
tion of k-tensors and antisymmetric.

• The Hodge transformation ∗ :
∧k
⇒

∧(n−k)(V) is defined by{
k = 0 : ∗1 = µ, followed by linear expansion,
0 < j ≤ n : ∗( â 1

∧ · · · ∧ â k) = µ a1 · · · ak, followed by linear expansion,

see Definition 2.12.1.
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Section 2.16 RRvH: The four faces of bilinear maps
For the bijective linear transformation G : V → V∗, see Theorem 2.5.1.

V × V M
−−−−→ R

(v, w) 7−−−→ v′M w

Mi j = M(bi, b j)

M ∈ V∗ ⊗ V∗

M = Ms t β
s
⊗ βt

V∗ × V M
−−−−→ R

( f , w) 7−−−→ f M w

Mi
j = M(βi, b j)

M ∈ V ⊗ V∗

M = Ms
t bs ⊗ β

t

Ms
t = gs u Mu t

G−1 M

V × V∗ M
−−−−→ R

(v, f ) 7−−−→ v′M f ′

M j
i = M(bi, β

j)

M ∈ V∗ ⊗ V

M = M t
s β

s
⊗ bt

M t
s = Ms u gu t

M G−1

V∗ × V∗ M
−−−−→ R

( f , g) 7−−−→ f M g′

Mi j = M(βi, β j)

M ∈ V ⊗ V

M = Ms t bs ⊗ bt

Ms t = gs u Mu v gv t

G−1 M G−1
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Chapter 3 Tensor Fields on Rn

Section 3.1 Curvilinear Coordinates and Tangent Spaces
In this chapter are considered scalar fields, vector fields and the more general tensor
fields on open subsets of Rn. In the foregoing chapter is introduced the Vector Space
Rn as the set of all real columns of length n with the usual definitions of addition and
scalar multiplication. Elements of Rn , which are also called points, are notated by X
and the standard basis of Rn is notated by {Ei}, with

Ei = (0, · · · , 0, 1, 0, · · · , 0)T,

with the 1 at the i-th position. Every X ∈ Rn can be written as X = xiEi.

Definition 3.1.1 Let Ω be an open subset of Rn. A system of n real-valued func-
tions { f i(X)}, defined on Ω, is called a (curvilinear) coordinate system for Ω, if the
following conditions are satisfied:

• The map f = ( f 1, · · · , f n)T of Ω to Rn is injective. The following notation is
used ui = f i(xiEi). Notice that the functions f i are functions of the variables
xi.

• The set U = f (Ω) is an open subset of Rn.
• The map f is differentiable at every point X ∈ Ω and there holds also that

det
[
∂ f i

∂x j (X)
]
6= 0 for every X ∈ Ω.

�

The map f is also called a chart map. The inverse map f← : U → Ω is called a
parametrization of Ω. The variables x j are functions of the variables ui. If there is
notated f← = (g1, · · · , gn) then holds that x j = g j(ui). The chart map and the param-
etrization are often not to describe by simple functions. The inverse function theorem
tells that f← is differentiable in every point of U and also that

∂ f i

∂x j (x
1, · · · , xn)

∂g j

∂uk (u1, · · · ,un) = δi
k,

with ul = f l(x1, · · · , xn). In corresponding points the matrices
[
∂ f i

∂x j

]
and

[
∂gl

∂uk

]
are the

inverse of each other. The curves, which are described by the equations f i(x1, · · · , xn) =
C, with C a constant, are called curvilinear coordinates belonging to the coordinate
curves.
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Example(s): 3.1.1

• Let Ω = Rn. Cartesian coordinates are defined by ui = xi. There holds that

det
[
∂ui

∂x j (X)
]

= det
[
δi

j
]

= 1.

• Let Ω = Rn. Furthermore B =
[
bi

]
∈ Rn and L =

[
Li

j
]
∈ Rn

n with detL 6= 0.
General affine coordinates are defined by ui = bi + Li

jx
j. There holds that

det
[
∂ui

∂x j

]
= detL 6= 0. The parametrization is given by

x j = (L−1) j
ku

k
− (L−1) j

kb
k.

• Let Ω = R2
\{(x, 0) | x ∈ [0,∞)} and U = (0,∞) × (0, 2π) ∈ R2. Polar

coordinates are defined by the parametrization

x = r cosφ, y = r sinφ, with x = x1, y = x2, r = u1 and φ = u2.

With some effort, the corresponding chart map is to calculate. There holds
that

r(x, y) =

√
x2 + y2,

φ(x, y) =


arccos

(
x√

x2+y2

)
y ≥ 0, x 6= 0

2π − arccos
(

x√
x2+y2

)
y ≤ 0, x 6= 0.

It is easy to examine thatΩ = R2
\{(x, 0) | x ∈ (−∞, 0]} andU = (0,∞)×(−π, π)

would be also a good choice. �

The subject of study in this chapter is tensor fields on Rn. Intuitive it means that at
every point X of Rn ( or of some open subset of it) there is added a tensor out of some
Tensor Space, belonging to that point X. The "starting" Vector Space, which is added
to every point X, is a copy of Rn. To distinguish all these copies of Rn, which belong to
the point X, they are notated by TX(Rn). Such a copy is called the Tangent Space in X.
Let Ω be an open subset of Rn. All these Tangent Spaces, which belong to the points
X ∈ Ω, are joined together to the so-called tangent bundle of Ω:

T(Ω) =
⋃
X∈Ω

TX(Rn) = Ω × Rn = {(X, x) | X ∈ Ω, x ∈ Rn
}.

The origins of all the Tangent Spaces TX(Rn), with X ∈ Ω, form together against the
open subset Ω.

Let xk = gk(u1, · · · ,un) be a parametrization of Ω. The vectors ci = ∂X
∂ui are tangent to

the coordinate curves in X. So there is formed, on a natural way, a with the curvilinear
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coordinate xk corresponding basis of TX(Rn). Notice that if xk are Cartesian coordinates
then ci = Ei. This is in certain sense a copy of the standard basis of Rn shifted parallel
to X.

The kernel index notation is used just as in the foregoing chapter. In stead of
ui = ui(x1, · · · , xn) is written xi′ = xi′(x1, · · · , xn) = xi′(xi) and analogous xi = xi(xi′).

The matrix
[
∂xi′

∂xi (xk)
]
is invertible in every point X, because the determinant is sup-

posed to be not equal to zero. Before is already noticed that the inverse in the point X

is given by
[
∂xi

∂xi′ (x
k′)

]
with xk′ = xk′(xk). Differentiation of xi′ = xi′(xi) to x j′ leads to

δi′
j′ =

∂xi′

∂xi (xk) ∂xi

∂xi′ (x
k′(xk)).

The basis of TX(Rn), associate with the coordinates xi is notated by {∂X
∂xi } or shorter with

{
∂

∂xi }. If there is a transition to other coordinates xi′ there holds that

∂

∂xi′ =
∂xi

∂xi′
∂

∂xi ,

such that the transition matrix of the basis { ∂
∂xi } to the basis { ∂

∂xi′ } is equal to the matrix[
∂xi

∂xi′

]
. Consequently the transition matrix of the basis { ∂

∂xi′ } to the basis { ∂
∂xi } is given

by the matrix
[
∂xi′

∂xi

]
.

In Chapter 2 is still spoken about a general Vector Space V. In the remaining lecture
notes the Tangent Space TX(Rn) plays at every point X ∈ Rn the rule of this general
Vector Space V. At every point X ∈ Rn is added besides the Tangent Space TX(Rn) also
the Cotangent Space T∗X(Rn) = (TX(Rn))∗ and more general the Vector Space TX

r
s(Rn)

of the tensors which are covariant of the order s and contravariant of the order r. But
it also possible to add subspaces such as the spaces of the symmetric or antisymmetric
tensors, notated by

∨
X(Rn), respectively

∧
X(Rn) at X.

To every basis of TX(Rn) belongs also a dual basis of T∗X(Rn). This dual basis, associ-
ated with the coordinates xi, is notated by {dxi

}. The dual basis {dxi′
} belonging to the

coordinates xi′ are founded with the matrix
[
∂xi′

∂xi

]
. There holds that

dxi′ =
∂xi′

∂xi dxi,

which follows out of Lemma 2.6.1. Be aware of the fact that the recipoke and dual bases
are in accordance with each other after the choice of an inner product, see the conlusion
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at the end of Section 2.6 �. The result agrees with the folklore of the
infinitesimal calculus!

Section 3.2 Definition of Tensor Fields on Rn

Definition 3.2.1 A scalar field or
(0
0
)
-tensor field ϕ on Rn is a map of Rn to R. At

every point X ∈ Rn there is added the number ϕ(X). �

Definition 3.2.2 A vector field, contravariant vector field or
(1
0
)
-tensor field a on

Rn is a map of Rn to
⋃

X∈Rn TX(Rn). At every point X ∈ Rn there is added a vector
a(X) element out of the corresponding Tangent Space TX(Rn). �

There belongs to a vector field a onRn, n functions ai onRn, such that a(X) = ai(xk) ∂
∂xi .

In other (curvilinear) coordinates xi′ is written a(xk(xk′)) = ai′(xk′) ∂

∂xi′ and there holds
that

ai′(xk′) =
∂xi′

∂xi (xk(xk′)) ai(xk(xk′)),

which is briefly written as ai′ =
∂xi′

∂xi ai.

Definition 3.2.3 A covector field, covariant vector field or
(0
1
)
-tensor field α onRn

is a map of Rn to
⋃

X∈Rn T∗X(Rn). At every point X ∈ Rn there is added an element
α(X) out of the dual space T∗X(Rn) of TX(Rn). �

There belongs to a covector field α on Rn, n functions αi on Rn, such that α(X) =
αi(xk)dxi. In other (curvilinear) coordinates xi′ is written α(xk(xk′)) = αi′(xk′)dxi′ and
there holds that

αi′(xk′) =
∂xi

∂xi′ (x
k′)αi(xk(xk′)),

which is briefly written as αi′ =
∂xi

∂xi′ αi.

Definition 3.2.4 A
(r
s
)
-tensor field on Rn is a map Φ of Rn to

⋃
X∈Rn TX

r
s(Rn). At

every point X ∈ Rn there is added a
(r
s
)
-tensor Φ(X) an element out of TX

r
s(Rn). �
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There belongs to a
(r
s
)
-tensor field on Rn, n(r+s) functions Φi1···ir

j1··· js
, such that

Φ(X) = Φi1···ir
j1··· js

(xk) ∂

∂xi1
⊗ · · · ⊗

∂

∂xir
⊗ dx j1 ⊗ · · · ⊗ dx js .

In other (curvilinear) coordinates xi′ is written

Φ(xk(xk′)) = Φ
i′1···i

′
r

j′1··· j
′
s
(xk′) ∂

∂xi′1
⊗ · · · ⊗

∂

∂xi′r
⊗ dx j′1 ⊗ · · · ⊗ dx j′s ,

and there holds that

Φ
i′1···i

′
r

j′1··· j
′
s
(xk′) =

∂xi′1

∂xi1
(xk(xk′)) · · · ∂xi′r

∂xir
(xk(xk′)) ∂x j1

∂x j′1
(xk′) · · · ∂x js

∂x j′s
(xk′) Φi1···ir

j1··· js
(xk(xk′)),

which is briefly written as

Φ
i′1···i

′
r

j′1··· j
′
s

=
∂xi′1

∂xi1
(xk
· · ·
∂xi′r

∂xir
(xk ∂x j1

∂x j′1
· · ·
∂x js

∂x j′s
Φi1···ir

j1··· js
(xk(xk′)).

Definition 3.2.5 A differential form of degree k or k-form θ onRn is a map ofRn

to
⋃

X∈Rn
∧

X
k(Rn). At every pointX ∈ Rn there is added an antisymmetric k-tensor

θ(X) out of
∧

X
k(Rn). �

A 0-form is a scalar field and an 1-form is a covector field. In fact every k-form is a
(0
k
)
-

tensor field, see Definition 3.2.4. This class of tensor vector fields is important. That is
reason there is paid extra attention to these tensor fields.
To a k-form θ on Rn belong

(n
k
)
functions θi1···ik , for 1 ≤ i1 · · · ik ≤ n, on Rn such that

θ(X) =
∑

1≤i1 <···< ik≤n
θi1···ik(x

l) dxi1 ∧ · · · ∧ dxik . (3.1)

(Compare this with the representation 2.4 in Section 2.10.)

Lemma 3.2.1 If in other (curvilinear) coordinates xi′ is written

θ(xl(xl′)) =
∑

1≤i′1 <···< i′k≤n
θi′1···i

′

k
(xl′) dxi′1 ∧ · · · ∧ dxi′k , (3.2)

there holds that

θi′1···i
′

k
(xl′) =

∑
1≤i1 <···< ik≤n

J
i1···ik
i′1···i

′

k
(xl′)θi1···ik(x

l(xl′)) , (3.3)

with

J
i1···ik
i′1···i

′

k
=
∂(xi1 , · · · , xik)
∂(xi′1 , · · · , xi′k)

.

�
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Proof Consider the representation 3.1 and notice that

dxi1 ∧ · · · ∧ dxik =
∂xi1

∂x j′1
· · ·
∂xik

∂x j′k
dx j′1 ∧ · · · ∧ dx j′k . (3.4)

The terms in the summation of the right part of 3.4 are not equal to zero if the indices
j′p for p = 1, · · · , k are not equal. Choose a fixed, ordered collection of indices i′1, · · · , i

′

k
with 1 ≤ i′1 < · · · < i′k ≤ n. Choose now the terms in the summation of the right side of
3.4 such that the unordered collection j′1, · · · , j

′

k is exactly the collection i′1, · · · , i
′

k. Note
that there are k! possibilities. To every unordered collection j′1, · · · , j

′

k there is exactly
one σ ∈ Sk such that j′p = i′

σ(p), for p = 1, · · · , k. Out all of this follows

dxi1 ∧ · · · ∧ dxik =
∑

1≤i′1 <···< i′k≤n

∑
σ∈Sk

∂xi1

∂xi′
σ(1)
· · ·

∂xik

∂x j′
σ(k)

dxi′
σ(1) ∧ · · · ∧ dxi′

σ(k) .

To put the term dxi′
σ(1) ∧ · · · ∧ dxi′

σ(k) into the order dxi′1 ∧ · · · ∧ dxi′k has to be corrected
with a factor sgn(σ), the factor obtained by the order of the permutation. So

dxi1 ∧ · · · ∧ dxik =
∑

1≤i′1 <···< i′k≤n

∑
σ∈Sk

sgn(σ) ∂xi1

∂xi′
σ(1)
· · ·

∂xik

∂x j′
σ(k)

 dxi′1 ∧ · · · ∧ dxi′k .

In the term between the brackets we recognize the determinant J i1···ik
i′1···i

′

k
, such that

dxi1 ∧ · · · ∧ dxik =
∑

1≤i′1 <···< i′k≤n
J

i1···ik
i′1···i

′

k
dxi′1 ∧ · · · ∧ dxi′k .

With all of this follows that the representation in 3.1 can be written as

θ(X) =
∑

1≤i1 <···< ik≤n
θi1···ik(x

l)
∑

1≤i′1 <···< i′k≤n
J

i1···ik
i′1···i

′

k
(xl′) dxi′1 ∧ · · · ∧ dxi′k =

∑
1≤i′1 <···< i′k≤n

 ∑
1≤i1 <···< ik≤n

J
i1···ik
i′1···i

′

k
(xl′)θi1···ik(X)

 dxi′1 ∧ · · · ∧ dxi′k .

Compare this with 3.2 and immediately follows the relation 3.3. �

All the given definitions of the tensor fields, in this section, are such that the tensor
fields are defined as maps on Rn. Often are tensor fields not defined on the whole Rn

but just on an open subset of it. The same calculation rules remain valid of course.

Section 3.3 Alternative Definition
Let Ω ⊂ Rn. LetK (Ω) be the set of all coordinate systems on Ω and

F
r

s = {F : U→ Tr
s(Rn) | U = f (Ω), f ∈ K (Ω) }.
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We assume that the elements ofF r
s are smooth enough. The components of an element

F ∈ F r
s we note by Fi1···ir

j1··· js
with 1 ≤ ik ≤ n, 1 ≤ jl ≤ n, 1 ≤ k ≤ r and 1 ≤ l ≤ s. For

coordinate systems we use both the notation f as {xi
}.

Definition 3.3.1 A
(r
s
)
-tensor field T on Ω is a map fromK (Ω) to F r

s such that if
T : {xi

} 7→ F and T : {xi′
} 7→ G there is satisfied to

G
i′1···i

′
r

j′1··· j
′
s

=
∂xi′1

∂xi1
(xk(xk′)) · · · ∂xi′r

∂xir
(xk(xk′)) ∂x j1

∂x j′1
(xk′) · · · ∂x js

∂x j′s
(xk′) Fi1···ir

j1··· js
(xk(xk′)).

�

This means that if, for some curvilinear coordinate system on Ω, a nr+s number of func-
tions on f (Ω) are given, that there exists just one

(r
s
)
-tensor field on Ω.

It has to be clear that the components of a tensor field out of definition 3.2.4 are the
same as the components of a tensor field out of definition 3.3.1, both with respect to the
same curvilinear coordinate system.

The alternative definition is important, because one wants to do algebraic and analyti-
cal operations, for instance differentation, without to be linked to a fixed chosen coor-
dinate system. If after these calculations a set of functons is obtained, it is the question
if these functions are the components of a tensor field. That is the case if they satisfy
the transformation rules. Sometimes they are already satisfied if there is satisfied to
these transformation rules inside a fixed chosen class ( a preferred class) of curvilin-
ear coordinate systems. An example of such a preferred class is the class of the affine
coordinate transformations. This class is described by

xi′ = bi′ + Li′
i xi, (3.5)

with
[
bi′

]
∈ Rn and

[
Li′

i

]
∈ Rn

n invertible. Coordinates which according 3.5 are associ-
ated with the cartesian coordinates are called affine coordinates. Even more important
are certain subgroups of it:

i.
[
Li′

i

]
orthogonal: Euclidean invariance, the "Principle of Objectivity’ in the

continuum mechanics.
ii.

[
Li′

i

]
Lorentz: Lorentz invariance in the special theory of relativity.

iii.
[
Li′

i

]
symplectic: Linear canonical transformations in the classical mechanics.

If inside the preferred class the transformations are valid, than are the components of
the obtained tensor field outside the preferred class. An explicit formula is most of the
time not given or difficult to obtain.
All the treatments done in the previous chapter can also be done with the tensor fields.
They can be done pointswise for every X on the spaces TXr

s
(Rn).
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Section 3.4 Examples of Tensor Fields

3.4.1 The Kronecker Tensor Field

In section 2.3 we introduced the Kronecker tensor. This is the tensor which adds to
every basis the identitymatrixwithmixed indices. Nowwedefine theKronecker tensor
field as the

(1
1
)
-tensor field that adds to every X ∈ Rn the Kronecker tensor in TX1

1
(Rn).

Because of the fact that

δi′
j′(x

k′) =
∂xi′

∂x j′ (x
k′) =

∂xi′

∂xi (xk(xk′)) ∂xi

∂x j′ (x
k′) =

∂xi′

∂xi (xk(xk′)) ∂x j

∂x j′ (x
k′) δi

j(x
k(xk′))

there is indeed defined a
(1
1
)
-tensor field.

3.4.2 Fundamental Tensor Fields

Let (·, ·) be a symmetric inner product on Rn. Let v, w ∈ TX(Rn) and define the inner
product (·, ·)X by

(v,w)X = δi j vi w j.

Here are vi and w j the components with respect to the elementary basis of TX(Rn).
These are found on a natural way with the help of the cartesian coordinates. Let GX be
the isomorphism of TX(Rn) to T∗X(Rn), which belongs to the inner product (·, ·)X. This
isomorphism is introduced in Theorem 2.5.1 and is there defined by

GX : v 7→ v̂, with < v̂,y >X = (v,y)X.

Definition 3.4.1 The fundamental tensor field g is the
(0
2
)
-tensor field on Rn de-

fined by

g(v,w) = (v,w)X.

�

Lemma 3.4.1 For every curvilinear coordinate system {xi
} on Rn holds

g = gi j dxi
⊗ dx j, with gi j(xk) =

(
∂

∂xi ,
∂

∂x j

)
X
. (3.6)
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Proof There holds(
∂

∂xi ,
∂

∂x j

)
X

= g( ∂
∂xi ,

∂

∂x j ) = (gkl dxk
⊗ dxl)

(
∂

∂xi ,
∂

∂x j

)
= gkl δ

k
i δ

l
j = gi j.

There is used that dxp( ∂
∂xs ) = δ

p
s , see also Definition 2.8.12. �

A curvilinear coordinate system {xi
} is called an orthogonal curvilinear coordinate sys-

tem, if at every point X, [gi j(xk)] is a diagonal matrix. This diagonal matrix is pointwise
to tranfer into a diagonal matrix with only the numbers ± 1 on the diagonal. Generally
this is not possible for all points simultaneously, because this would impose too many
constraints to the curvilinear coordinates. If the chosen inner product is positive, then
there can be entered functions hi such that gi j = δi j h2

i . These functions are called
scale factors.

Comment(s): 3.4.1 The length of the vectors 1
hi

∂

∂xi and hi dxi (not summate!) are
equal to one, because∣∣∣∣∣ 1

hi

∂

∂xi

∣∣∣∣∣ =

√(
1
hi

∂

∂xi ,
1
hi

∂

∂xi

)
X

=

√
1
h2

i
gii = 1 (not summate!)

and ∣∣∣hi dxi
∣∣∣ =

√
(hi dxi, hi dxi)X =

√
h2

i gii = 1 (not summate!).

The bases
{

1
hi

∂

∂xi

}
and

{
hi dxi

}
are orthonormal bases to the corresponding

tangent space and its dual.

3.4.3 Volume Forms and Densities

Let {xi
} be the cartesian coordinates on Rn and look to the differential form (n-form)

dx1
∧· · ·∧dxn, see Definition 3.2.5. The elementX ∈ Rn is fixed and v1, · · · , vn ∈ TX(Rn).

The number

(dx1
∧ · · · ∧ dxn)(v1, · · · , vn)

is the oriented volume of a parallellepipedum spanned by v1, · · · , vn ∈ TX(Rn). By the
transition to curvilinear coordinates {xi′

} the n-form transforms as
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dx1
∧ · · · ∧ dxn =

∂(x1, · · · , xn)
∂(x1′ , · · · , xn′)

dx1′
∧ · · · ∧ dxn′

such that in general (dx1′
∧ · · · ∧ dxn′)(v1, · · · , vn) will give another volume than

(dx1
∧· · ·∧dxn)(v1, · · · , vn). If we restrict ourselves to affine coordinate transformations

xi′ = bi′ + Li′
i xi with det L = 1, than holds

∂(x1, · · · , xn)
∂(x1′ , · · · , xn′)

= 1. In such a case, the

volume is called ’invariant’ under the given coordinate transformation.
A density is a antisymmetric Tensor Field of the form φ′(xk′)dx1′

∧ · · · ∧ dxn′ with a
function φ′, which satisfies

φ′(xk′)dx1′
∧ · · · ∧ dxn′ = φ”(xk”)dx1”

∧ · · · ∧ dxn”,

so

φ′(xk′) = φ”(xk”(xk′))
∂(x1”, · · · , xn”)
∂(x1′ , · · · , xn′)

.

Section 3.5 Examples of Curvilinear Coordinates

3.5.1 Polar coordinates on R2

Notate the cartesian coordinates on R2 by x and y, and the polar coordinates by r and
φ. The cartesian coordinates depend on the polar coordinates by x = r cosφ and y =
r sinφ. There holds

∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

 =

(
cosφ −r sinφ
sinφ r cosφ

)
=


x√

x2 + y2
−y

y√
x2 + y2

x

 ,
and out of this result follows easily that

∂r
∂x

∂r
∂y

∂φ

∂x
∂φ

∂y

 =

 cosφ sinφ

−
sinφ

r
cosφ

r

 =


x√

x2 + y2

y√
x2 + y2

−
y

x2 + y2
x

x2 + y2

 .
With the use of these transition matrices we find the following relations between the
bases and dual bases
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∂
∂r

=
x√

x2 + y2

∂
∂x

+
y√

x2 + y2

∂
∂y

∂
∂φ

= −y ∂
∂x

+ x ∂
∂y


∂
∂x

= cosφ ∂
∂r
−

sinφ
r

∂
∂φ

∂
∂y

= sinφ ∂
∂r

+
cosφ

r
∂
∂φ

dr =
x√

x2 + y2
dx +

y√
x2 + y2

dy

dφ = −
y

x2 + y2 dx +
x

x2 + y2 dy

{ dx = cosφdr − r sinφdφ

dy = sinφdr + r cosφdφ

With the help of these relations are tensor fields, given in cartesian coordinates, to
rewrite in other coordinates, for instance polar coordinates. In polar coordinates is the
vectorfield

x
x2 + y2

∂
∂x

+
y

x2 + y2
∂
∂y

given by 1
r
∂
∂r

, the 2-form (x2 + y2) dx ∧ dy by r3 dr ∧ dφ and the volume form dx ∧ dy
by r dr ∧ φ. The fundamental tensor field which belongs to the natural inner product
on R2 can be described in polar coordinates by

dx ⊗ dx + dy ⊗ dy = dr ⊗ dr + r2 dφ ⊗ dφ. (3.7)

3.5.2 Cylindrical coordinates on R3

Notate the cartesian coordinates on R3 by x, y and z, and the cylindrical coordinates
by r, φ and z. The cartesian coordinates depend on the cylindrical coordinates by
x = r cosφ, y = r sinφ and z = z. The relations between the bases and the dual bases

are the same as to the polar coordinates, supplemented with dz = dz and ∂
∂z

=
∂
∂z

.
The state of stress of a tube under an internal pressure p, such that the axial displace-
ments are prevented, is given by the contravariant 2-tensor field

T =
a2 p

b2 − a2

((
1 − b2

r2

)
∂
∂r
⊗
∂
∂r

+

(
1 +

b2

r2

)
1
r2

∂
∂φ
⊗

∂
∂φ

+ 2 ν ∂
∂z
⊗
∂
∂z

)
,

where a and b, with a < b, are the radii of the inside and outside wall of the tube.
Further is ν some material constant.

3.5.3 Spherical coordinates on R3
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Notate the cartesian coordinates on R3 by x, y and z, and the spherical coordinates
by ρ, θ, φ. The cartesian coordinates depend on the spherical coordinates by x =
ρ cosφ sinθ, y = ρ sinφ sinθ and z = ρ cosθ. There holds

∂x
∂ρ

∂x
∂θ

∂x
∂φ

∂y
∂ρ

∂y
∂θ

∂y
∂φ

∂z
∂ρ

∂z
∂θ

∂z
∂φ


=


cosφ sinθ ρ cosφ cosθ −ρ sinφ sinθ

sinφ sinθ ρ sinφ cosθ ρ cosφ sinθ

cosθ −ρ sinθ 0



=



x√
x2 + y2 + z2

x z√
x2 + y2

−y

y√
x2 + y2 + z2

y z√
x2 + y2

x

z√
x2 + y2 + z2

−

√
x2 + y2 0


.

After some calculations follows that

∂ρ

∂x
∂ρ

∂y
∂ρ

∂z
∂θ
∂x

∂θ
∂y

∂θ
∂z

∂φ

∂x
∂φ

∂y
∂φ

∂z


=



cosφ sinθ sinφ sinθ cosθ
cosφ cosθ

ρ

sinφ cosθ
ρ

−
sinθ
ρ

−
sinφ
ρ sinθ

cosφ
ρ sinθ

0



=



x√
x2 + y2 + z2

y√
x2 + y2 + z2

z√
x2 + y2 + z2

x z
(x2 + y2 + z2)

√
x2 + y2

y z
(x2 + y2 + z2)

√
x2 + y2

−

√
x2 + y2

(x2 + y2 + z2)

−
y

(x2 + y2)
x

(x2 + y2)
0


.

With the help of these two transition matrices the relations between bases and dual
bases can be shown. Tensor Fields expressed in cartesian coordinates can be rewritten in
spherical coordinates. So is the volume dx ∧ dy ∧ dz rewritten in spherical coordinates
equal to ρ2 sinθdρ ∧ dθ ∧ dφ. The electrical field due to a point charge in the originis
given by cartesian coordinates by

(x2 + y2 + z2)
−

3
2

(
x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z

)
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and in spherical coordinates by the simple formula 1
ρ2

∂
∂ρ

. Further transforms the fun-

damental tensor field, corresponding to the natural inner product on R3, as follows

dx ⊗ dx + dy ⊗ dy + dz ⊗ dz = dρ ⊗ dρ + ρ2 dθ ⊗ dθ + ρ2 sin2 θdφ ⊗ dφ.

The state of stress of a hollw ball under an internal pressure p is given by the contravari-
ant 2-tensor field

T =
a3 p

b3 − a3

((
1 − b3

ρ3

)
∂
∂ρ
⊗

∂
∂ρ

+

(
1 +

b3

2ρ3

)
1
ρ2

∂
∂θ
⊗

∂
∂θ

+

(
1 +

b3

2ρ3

)
1

ρ2 sin2 θ

∂
∂φ
⊗

∂
∂φ

)
,

where a and b, with a < b, are the radii of the inside and outside wall of the ball.

Section 3.6 Differential Operations on Tensor Fields

3.6.1 The gradient

Let f be a scalar field on Rn and let {xi
} be a curvilinear coordinate system on Rn. Let

{xi′
} be another curvilinear coordinate system on Rn. Since

∂ f
∂xi′ =

∂xi

∂xi′
∂ f
∂xi

are the functions ∂i f =
∂ f
∂xi the components of a covariant tensor field.

Definition 3.6.1 The covariant tensor field d f = ∂i f dxi is called the gradient
field of the scalar field f . �

Let a be a vector field and let ai be the components of this vector field with respect to
the curvilinear coordinates xi. The functions ai ∂ j f form the components of a

(1
1
)
−tensor

field.

Definition 3.6.2 The contraction ai ∂i f is called the directional derivative of f in
the direction a, notation

La f =< d f , a >= ai ∂i f .

�

If there is defined an inner product onRn, than there can be formed out of the gradient
field, the contravariant vectorfield



91

G
−1 d f = gki ∂i f

∂

∂xk .

Confusingly enough G−1 d f is often called the ’gradient of f’. If {xi
} is an orthogonal

curvilinear coordinate system than we can write

G
−1 d f =

1
h1

∂ f
∂x1

1
h1

∂

∂x1 + · · · +
1
hn

∂ f
∂xn

1
hn

∂
∂xn .

3.6.2 The Lie derivative

Let v and w be contravariant vector fields on Rn.

Definition 3.6.3 With respect to the curvilinear coordinates xi we define

(Lv w) j = wi ∂iv j
− vi ∂iw j.

�

Let {xi′
} be some other coordinate system, than holds

(Lv w) j′ = wi′ ∂iv j′
− vi′ ∂i′w j′

= Ai′
i wi Ak

i′ ∂k

(
A j′

j v j
)
− Ai′

i vi Ak
i′ ∂k

(
A j′

j w j
)

= wk ∂k

(
A j′

j v j
)
− vk ∂k

(
A j′

j w j
)

= wk
(
v j ∂kA

j′
j + A j′

j ∂kv j
)
− vk

(
w j ∂kA

j′
j + A j′

j ∂kw j
)

= A j′
j

(
wk∂kv j

− vk ∂kw j
)

+
(
wk v j

− vk w j
)
∂kA

j′
j

= A j′
j (Lv w) j + w j vk

(
∂ jA

j′
k − ∂kA

j′
j

)
= A j′

j (Lv w) j .

It seems that the functions (Lv w) j are the components of a contravariant vector field.
The vector fieldLv w is called the Lie product of v andw. With this product the space of
vector fields forms a Lie algebra. For a nice geometrical interpretation of the Lie product
we refer to (Abraham et al., 2001) ,Manifolds, · · · or (Misner et al., 1973) ,Gravitation.

3.6.3 Christoffel symbols on Rn



92

Let {xi
} be a curvilinear coordinate system on Rn.

Definition 3.6.4 The n3 function
{

i
j k

}
defined by

∂ j ∂k X =

{
i

j k

}
∂i X,

are called Christoffel symbols. �

Notice(s): 3.6.1 The following two equalities are easy to verify

•

{
i

j k

}
=

{
i

k j

}
and

•

{
i

j k

}
=< dxi, ∂ j ∂k X >.

Let {xi′
} be another curvilinear coordinate system on Rn, than holds i′

j′ k′

 =< dxi′ , ∂ j′ ∂k′ X >

=< Ai′
i dxi, A j

j′ ∂ j
(
Ak

k′ ∂k X
)
>

= Ai′
i < dxi, A j

j′ A
k
k′ ∂ j ∂k X + A j

j′
(
∂ j Ak

k′
)
∂k X >

= Ai′
i A j

j′ A
k
k′ < dxi, ∂ j ∂k X > + Ai′

i A j
j′

(
∂ j Ak

k′
)
< dxi, ∂k X >

= Ai′
i A j

j′ A
k
k′

 i

j k

 + Ai′
i A j

j′
(
∂ j Ak

k′
)
δi

k ,

what means that {
i′

j′ k′
}

= Ai′
i A j

j′ A
k
k′

{
i

j k

}
+ Ai′

i ∂ j′ Ai
k′ . (3.8)

The term Ai′
i ∂ j′ Ai

k′ is in general not equal to zero, so the Christoffel symbols are not the
components of a

(1
2
)
-tensor field.

In the definition of the Christoffel symbols there is on no way used an inner product on
Rn. If there is defined a symmetric inner product on Rn, than the Christoffel symbols
are easy to calculate with the help of the fundamental tensor field. The Christoffel
symbols are than to express in the components of the fundamental vector field gi j en
its inverse gkl. There holds, see also Lemma 3.6,
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∂ig jk + ∂ jgki − ∂kgi j =
(
∂i ∂ j X, ∂k X

)
+

(
∂ j X, ∂i ∂k X

)
+(

∂ j ∂k X, ∂i X
)

+
(
∂k X, ∂ j ∂i X

)
+

−

(
∂k ∂i X, ∂ j X

)
−

(
∂i X, ∂k ∂ j X

)
= 2

(
∂k X, ∂i ∂ j X

)
.

The inner product can be written as the action of a covector on a vector. So(
∂k X, ∂i ∂ j X

)
= gkl < dxl, ∂i ∂ j X >= gkl

{
l

i j

}
,

out of this follows the identity

∂ig jk + ∂ jgki − ∂kgi j = 2 gkl

{
l

i j

}
.

Multiply the obtained identity by 1
2

gmk and then it turns out that{
m

i j

}
=

1
2

gmk
(
∂ig jk + ∂ jgki − ∂kgi j

)
. (3.9)

For affine coordinates, which depend on the cartesian coordinates as given in
formula 3.5, the Christoffel symbols are all equal to zero. Choose the normal in-
ner product on Rn, then is the Gram matrix G = I, see Definition 2.5.2. With
Comment 2.5.1 follows that G,, = LT L. Since L is a constant matrix, all the compo-
nents of the fundamental tensor field are constant. These components correspond to
the normal inner product, with respect to the arbitrary affine coordinates. Out of the
Identity 3.9 follows directly that all the Christoffel symbols are equal to zero.
With the help of Formula 3.7 follows that for polar coordinates holds that

G =

(
1 0
0 r2

)
.

So we find that  2

1 2

 =

 2

2 1

 =
1
2

1
r2
∂
∂r

r2 and 1

2 2

 = −r.

All the other Christoffel symbols, which belong to the polar coordinates, are equal to
zero.

3.6.4 The covariant derivative on Rn
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Let a be a vector field onRn and let {xi
} be a curvilinear coordinate system onRn. Write

a = ai ∂

∂xi . Let there also be a second curvilinear coordinate system {xi′
} on Rn, then

holds

∂ j′ai′ = A j
j′ ∂ j

(
Ai′

i ai
)

= A j
j′ A

i′
i ∂ jai + ai ∂ j′Ai′

i . (3.10)

The second term in Formula 3.10 is in general not equal to zero, so the functions ∂ jai

are not the components of a
(1
1
)
-tensor field.

Definition 3.6.5 We define the n2 function 5 jai by

5 jai = ∂ jai +

{
i

j k

}
ak. (3.11)

�

Lemma 3.6.1 The functions 5 jai form the components of a
(1
1
)
-tensor field.

Proof Because of the transformation rule of the Christoffel symbols, see Formula 3.8,
and of Formula 3.10 holds

5 j′ ai′ = ∂ j′ai′ +

 i′

j′ k′

 ak′

= Ai′
i A j

j′ ∂ jai +
(
∂ j′Ai′

i

)
ai +

Ai′
i A j

j′ A
k
k′

 i

j k

 + Ai′
i

(
∂ j′ Ai

k′
) Ak′

l al .

= Ai′
i A j

j′

∂ jai + Ak
k′

 i

j k

Ak′
l al

 +
(
∂ j′Ai′

i

)
ai + Ai′

i

(
∂ j′ Ai

k′
)

Ak′
l al

= Ai′
i A j

j′

∂ jai +

 i

j k

 ak

 +
(
∂ j′Ai′

i

)
ai + Ai′

i Ak′
l

(
∂ j′ Ai

k′
)

al

Think to the simple formula

0 = ∂ j′δ
k
l = ∂ j′

(
Ai

k′ A
k′
l

)
= Ai

k′
(
∂ j′Ak′

l

)
+ Ak′

l

(
∂ j′Ai

k′
)
,

such that
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5 j′ ai′ = Ai′
i A j

j′ 5 j ai +
(
∂ j′Ai′

i

)
ai
− Ai′

i Ai
k′

(
∂ j′Ak′

l

)
al

= Ai′
i A j

j′ 5 j ai +
(
∂ j′Ai′

i

)
ai
− δi′

k′
(
∂ j′Ak′

l

)
al

= Ai′
i A j

j′ 5 j ai.

�

Definition 3.6.6 The covariant derivative of a vector field a, notation 5a, is given
by the

(1
1
)
-tensor field

5a = 5 jai dx j
⊗

∂

∂xi ,

where the components 5 jai are given by Formula 3.11. �

Let α be a covector field on Rn. It is easy to see that the functions ∂ jαi are not the com-
ponents of a

(0
2
)
-tensor field. For covector fields we introduce therefore also a covariant

derivative.

Lemma 3.6.2 The n2 functions 5 jαi defined by

5 jαi = ∂ jαi −

{
k

j i

}
αk. (3.12)

form the components of
(0
2
)
-tensor field. �

Definition 3.6.7 The covariant derivative of a covector field α, notation 5α, is
given by the

(0
2
)
-tensor field

5α = 5 jαi dx j
⊗ dxi,

where the components 5 jαi are given by Formula 3.12. �

With the help of the covariant derivative of a vector field, there can be given a definition
of the divergence of a vector field.

Definition 3.6.8 The divergence of a vector field a is given by the scalar field 5iai.
The functions ai are the components of a with respect to some arbitrary curvilinear
coordinate system. �
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Notice(s): 3.6.2 Because of the fact that the calculation of a covariant derivative
is a tensorial operation, it does not matter with respect of what coordinate system
the functions ai are calculated and subsequent to calculate the divergence of a. The
fact is that 5i′ai′ = 5iai.

With the help of covariant derivative, the gradient field and the fundamental tensor
field there can be given a definition of the Laplace operator

Definition 3.6.9 Let φ be a scalar field, the Laplace operator, notation 4, is de-
fined by

4φ = 5G−1 dφ = 5igi j ∂ jφ.

�

Notice(s): 3.6.3 Again the observation that because of the tensorial actions of
the various operations, it does not matter what coordinate system is chosen for the
calculations.

Later on we come back to the classical vector operations grad, div, rot and 4. They are
looked from some other point of view.

3.6.5 The exterior derivative

A differential form of order k is a tensor field that adds to every point X ∈ Rn a anti-
symmetric covariant k-tensor in

∧k
X(Rn). A differential form of order k is also called a

k-form or a antisymmetric k-tensor field, see Definition 3.2.5. There are (n + 1) types
of non-trival k-forms. These are the 0-forms ( the scalarfields), 1-forms ( the covector-
fields), . . . , n-forms. In Section 2.10 is already commented that antisymmetric k-tensors,
with k > n, are not interesting types, because they add 0 to every point.

To an arbitrary curvilinear coordinate system {xi
} and a k-form ϑ, belong

(
n
k

)
functions

ϑi1 · · · ik , 1 ≤ i1 < · · · < ik ≤ n, such that for every X ∈ Rn holds

ϑ(X) =
∑

1≤ i1 < ···< ik ≤n
ϑi1 · · · ik(X) dxi1 ∧ · · · ∧ dxik . (3.13)

Hereby presents dxi1 ∧ · · · ∧ dxik a basisvector of
∧k

X(Rn). In Lemma 3.2.1 is described
how the functions ϑi1 · · · ik transform if there is made a transition to other curvilinear
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coordinates.
In this section we define a differentiation operator d, such that k-forms become
(k + 1)-forms, while n-forms become zero.

Lemma 3.6.3 Let f1, · · · , fr be functions of (r + 1)-variables, notation

fi = fi(x1, · · · , xr+1), for i = 1, · · · , r,

then holds
r+1∑
l=1

(−1)l ∂

∂xl

(
∂( f1, · · · , fr)

∂(x1, · · · , xl−1, xl+1, · · · , xr+1)

)
= 0. (3.14)

�

Proof We give a sketch of the proof. Call F = ( f1, · · · , fr)T. The l-th sommand of the
summation in the left part of Formula 3.14 is than, on a factor −1, to write as

∂

∂xl det
(
∂F
∂x1 , · · · ,

∂F
∂xl−1 ,

∂F
∂xl+1 , · · · ,

∂F
∂xr+1

)
=∣∣∣∣∣∣ ∂2F

∂xl∂x1 , · · · ,
∂F
∂xl−1 ,

∂F
∂xl+1 , · · · ,

∂F
∂xr+1

∣∣∣∣∣∣ + · · ·

+

∣∣∣∣∣∣ ∂F
∂x1 , · · · ,

∂2F
∂xl−1∂xl ,

∂F
∂xl+1 , · · · ,

∂F
∂xr+1

∣∣∣∣∣∣ +

∣∣∣∣∣∣ ∂F
∂x1 , · · · ,

∂F
∂xl−1 ,

∂2F
∂xl∂xl+1 , · · · ,

∂F
∂xr+1

∣∣∣∣∣∣ + · · ·

+

∣∣∣∣∣∣ ∂F
∂x1 , · · · ,

∂F
∂xl−1 ,

∂F
∂xl+1 , · · · ,

∂2F
∂xl∂xr+1

∣∣∣∣∣∣ .
In this way Formula 3.14 is to write as a summation of r (r + 1) terms, ( r (r + 1) is always
a even number!), in the form of pairs

±det
(
∂F
∂x1 , · · · ,

∂2F
∂xk ∂xl , · · · ,

∂F
∂xr+1

)
,

which cancel each other.
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Definition 3.6.10 Let {xi
} be a curvilinear coordinate system on Rn and let ϑ be

a k-form. Write ϑ as in Formula 3.13. The exterior derivative of ϑ, notation dϑ, is
defined by

dϑ =

n∑
r=1

 ∑
1≤ i1 < ···< ik ≤n

∂ϑi1 · · · ik
∂xr dxr

∧ dxi1 ∧ · · · ∧ dxik
 .

Note that a summand, where r is equal to one of the i j’s, is equal to zero. The sum
formed by the terms, where r is not equal to one of the i j’s, is obviously to write as

dϑ =
∑

1≤ j1 < ···< jk+1 ≤n
(dϑ) j1 · · · jk+1

dxj1 ∧ · · · ∧ dxjk+1

�

Note that the exterior derivative of a n-forms is indeed 0. At this moment, there is still
the question if d′ϑ, this is the exterior derivative of ϑ with respect to the coordinates
{xi′
}, is the same as dϑ.

Example(s): 3.6.1

• Consider R2 with the Cartesian coordinates x and y. Let φ be a scalar field
than is

dφ =
∂φ

∂x
dx +

∂φ

∂y
dy

a 1-form. Let α be a covector field en write α = α1 dx + α2 dy than is

dα =

(
∂α2
∂x
−
∂α1
∂y

)
dx ∧ dy

a 2-form. Let γ be 2-form en write γ = γ12 dx ∧ dy than is dγ = 0. Note that
in all the cases applying d twice always gives zero.
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Example(s): 3.6.2

• Consider R3 with the Cartesian coordinates x, y and z. Let φ be a scalar field
than is

dφ =
∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dz

a 1-form. Let α be a covector field en write α = α1 dx + α2 dy + α3 dz than is

dα =

(
∂α1
∂x

dx +
∂α1
∂y

dy +
∂α1
∂z

dz
)
∧ dx +(

∂α2
∂x

dx +
∂α2
∂y

dy +
∂α2
∂z

dz
)
∧ dy +

(
∂α3
∂x

dx +
∂α3
∂y

dy +
∂α3
∂z

dz
)
∧ dz =(

∂α2
∂x
−
∂α1
∂y

)
dx ∧ dy +

(
∂α3
∂x
−
∂α1
∂z

)
dx ∧ dz +

(
∂α3
∂y
−
∂α2
∂z

)
dy ∧ dz

a 2-form. Let ω be a covector field en write ω = ω12 dx ∧ dy + ω13 dx ∧ dz +
ω23 dy ∧ dz than is

dω =
∂ω12
∂z

dz ∧ dx ∧ dy +
∂ω13
∂y

dy ∧ dx ∧ dz +
∂ω23
∂x

dx ∧ dy ∧ dz

=

(
∂ω23
∂x

−
∂ω13
∂y

+
∂ω12
∂z

)
dx ∧ dy ∧ dz

a 3-form. Let γ be 3-form en write γ = γ123 dx ∧ dy ∧ dz than is dγ = 0.
Note that in all the cases applying d twice always gives zero.

Theorem 3.6.1 The definition of the exterior derivative d is independent of the
coordinate system. �

Proof Let {xi
} and {xi′

} be two coordinate systems. We prove the proposition for the
differential form

ω = αdx1
∧ · · · ∧ dxk,

where α is an arbitrary function of the variables xi. The approach to prove the propo-
sition for an arbitrary differential form of the form αdxi1 ∧ · · · ∧ dik is analog. The
proposition follows by taking linear combinations.
The exterior derivative of ωwith respect to the variables xi is given by

dω =

n∑
r=1

∂α
∂xr dxr

∧ dx1
∧ · · · ∧ dxk.
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On the basis of Lemma 3.2.1, ω can be written, with respect to the coordinates xi′ , as

ω =
∑

1≤ i′1 < ···< i′k ≤n
α
∂

(
x1, · · · , xk

)
∂
(
xi′1 , · · · , xi′k

) dxi′1 ∧ · · · ∧ dxi′k .

The exterior derivative of ωwith respect to the coordinates xi′ , notated by d′ω, is given
by

d′ω =

n∑
r′=1

 ∑
1≤ i′1 < ···< i′k ≤n

∂α

∂xr′
∂

(
x1, · · · , xk

)
∂
(
xi′1 , · · · , xi′k

) dxr′
∧ dxi′1 ∧ · · · ∧ dxi′k

 + (3.15)

α
n∑

r′=1

 ∑
1≤ i′1 < ···< i′k ≤n

∂

∂xr′

 ∂
(
x1, · · · , xk

)
∂
(
xi′1 , · · · , xi′k

) dxr′
∧ dxi′1 ∧ · · · ∧ dxi′k

 . (3.16)

The first sum, see Formula 3.15, is to write as ( with the use of the index notation)

∂α

∂xr′ dxr′
∧ dx1

∧ · · · ∧ dxk =

∂ xr

∂xr′
∂ xr′

∂xl
∂α
∂xr dxl

∧ dx1
∧ · · · ∧ dxk =

∂α
∂xr dxr

∧ dx1
∧ · · · ∧ dxk ,

and that we recognize as dω. The second sum, see Formula 3.16, is to write as

α
∑

1≤ j′1 < ···< j′k+1
≤n

 ∑
{r′,i′1 < ···< i′k}={ j

′

1 < ···< j′k+1
}

∂

∂xr′

 ∂
(
x1, · · · , xk

)
∂
(
xi′1 , · · · , xi′k

) dxr′
∧ dxi′1 ∧ · · · ∧ dxi′k


(3.17)

where the inner sum is a summation over all possible combinations r′, i′1 < · · · < i′k,
a collection of (k + 1) natural numbers, which coincides with the collection j′1 < · · · <
j′k+1. The inner sum of Formula 3.17 can then be written as

k+1∑
l=1

∂

∂x j′l

 ∂
(
x1, · · · , xk

)
∂
(
x j′1 , · · · , x j′l−1 , x j′l+1 , · · · , x j′k+1

) dx j′l ∧ dx j′1 ∧ · · · ∧ dx j′l−1 ∧ dx j′l+1 ∧ · · · ∧ dx j′k+1 .

Put the obtained (k + 1)-form dx j′l ∧ dx j′1 ∧ · · · ∧ dx j′l−1 ∧ dx j′l+1 ∧ · · · ∧ dx j′k+1 in the order
dx j′1 ∧ · · · ∧ dx j′k+1 . This costs a factor (−1)(l+1). With the use of Lemma 3.6.3 it follows
that the second sum, see Formula 3.16, is equal to zero. �

Theorem 3.6.2 Two times applying d on a k-form gives zero,
that means d ∧ d = 0. �
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Proof Because of Theorem 3.6.1, it is enough to prove the proposition just for one
coordinate system {xi

}. The same as in the foregoing theorem it is enough to prove the
proposition for the k-form

ω = αdx1
∧ · · · ∧ dxk,

with α an arbitrary function of the variables xi. There is

d ∧ dω =

n∑
l=1

n∑
r=1

∂2 α

∂xl ∂xr dxr
∧ dxl

∧ dx1
∧ · · · ∧ dxk.

This summation exist out of n (n − 1) terms, an even number of terms. These terms
become pairwise zero, because

∂2 α

∂xl ∂xr =
∂2 α

∂xr ∂xl and dxr
∧ dxl = −dxl

∧ dxr.

�

Theorem 3.6.2 is the generalisation to Rn of the classical results

rot grad = 0 and div rot = 0 inR3.

Theorem 3.6.3 Let a be a l-form and b be am-form then is da ∧ b a (l + m + 1)-form
and there holds

d(a ∧ b) = da ∧ b + (−1)l a ∧ db .

�

Proof We prove the theorem for the special case that

a = αdx1
∧ · · · ∧ dxl and b = βdxl+1

∧ · · · ∧ dxm,

where xi are arbitrary (curvilinear) coordinates and α and β are functions of the vari-
ables xi. There holds that

a ∧ b = α βdx1
∧ · · · ∧ dxl+m,

such that

d(a ∧ b) =

n∑
p=1

(
β
∂α
∂xp + α

∂ β

∂xp

)
dxp
∧ dx1

∧ · · · ∧ dxl+m

Furthermore holds

dα ∧ β =

n∑
p=1

β
∂α
∂xp dxp

∧ dx1
∧ · · · ∧ dxl+m

and
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α ∧ dβ =

n∑
p=1

α
∂ β

∂xp dx1
∧ · · · ∧ dxl

∧ dxp
∧ dxl+1

∧ · · · ∧ dxl+m .

In this last expression it costs a factor (−1)l to get dxp to the front of that expression.
Hereby is the theorem proven for the special case. �

Section 3.7 Combinations of the exterior derivative
and the Hodge transformation

If there are chosen a symmetric inner product and a oriented volume on Rn, they can
be transferred to every tangent space ( see the Subsections 3.4.2 and 3.4.3). In every
point X can then the Hodge image ∗ϑ(X) be considered. This Hodge image is then an
antisymmetric (n − k)-tensor (see Section 2.12). In this section we consider combina-
tions of the algebraic operator ∗ and the differential operator d on differential forms.

3.7.1 Combinations of d and ∗ in R2

Let x and y be Cartesian coordinates on R2 and take the natural inner product.
If α = α1 dx + α2 dy, than holds

∗ α = −α2 dx + α1 dy

d ∗ α =

(
∂α1
∂x

+
∂α2
∂y

)
dx ∧ dy,

∗ d ∗ α =
∂α1
∂x

+
∂α2
∂y

.

Let f be scalar field, than holds

d f =
∂ f
∂x

dx +
∂ f
∂y

dy,

∗ d f = −
∂ f
∂y

dx +
∂ f
∂x

dy,

d ∗ d f =

(
∂2 f
∂x2 +

∂2 f
∂y2

)
dx ∧ dy,

∗ d ∗ d f =
∂2 f
∂x2 +

∂2 f
∂y2 .

This last result is the Laplace operator with respect to the natural inner product and
volume form on R2.
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3.7.2 Combinations of d and ∗ in R3

Consider R3 with the Cartesian coordinates x, y and z and the usual inner product.
If α = α1 dx + α2 dy + α3 dz, than holds

dα =

(
∂α2
∂x
−
∂α1
∂y

)
dx ∧ dy +

(
∂α3
∂x
−
∂α1
∂z

)
dx ∧ dz +

(
∂α3
∂y
−
∂α2
∂z

)
dy ∧ dz,

∗ dα =

(
∂α3
∂y
−
∂α2
∂z

)
dx +

(
∂α1
∂z
−
∂α3
∂x

)
dy +

(
∂α2
∂x
−
∂α1
∂y

)
dz,

∗ α = α1 dy ∧ dz − α2 dx ∧ dz + α3 dx ∧ dy,

d ∗ α =

(
∂α1
∂x

+
∂α2
∂y

+
∂α3
∂z

)
dx ∧ dy ∧ dz,

∗ d ∗ α =
∂α1
∂x

+
∂α2
∂y

+
∂α3
∂z

.

Let f be scalar field, than holds

d f =
∂ f
∂x

dx +
∂ f
∂y

dy +
∂ f
∂z

dz,

∗ d f =
∂ f
∂z

dx ∧ dy −
∂ f
∂y

dx ∧ dz +
∂ f
∂x

dy ∧ dz,

d ∗ d f =

(
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2

)
dx ∧ dy ∧ dz,

∗ d ∗ d f =
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 .

Also in R3, the operator ∗d ∗ d seems to be the Laplace operator for scalar fields.

Notice(s): 3.7.1 All the combinations of d and ∗ are coordinate free and can be
written out in any desired coordinate system.

3.7.3 Combinations of d and ∗ in Rn

Let there are chosen a symmetric inner product and a matching oriented volume onRn

and let ω be a k-form.
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Definition 3.7.1 The Laplace operator 4 for ω is defined by

4ω = (−1)n k (∗d ∗ dω + (−1)n d ∗ d ∗ ω) .

�

Notice that k-forms become k-forms. In R3 holds that

4(α1 dx + α2 dy + α3 dz) = (4α1) dx + (4α2) dy + (4α3) dz.

Check this. Check furthermore that in R4 with the Lorentz inner product, for scalar
fields φ, 4φ is the same as �φ, where � represents the d’Alembertian.

Comment(s): 3.7.1 d’Alemertian is also called the the Laplace operator of the
Minkowski space. In standard coordinates t, x, y and z and if the inner product
has the signature (+,−,−,−), it has the form

� =
∂2

∂t2 −
∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2 ,

see also Example 2.12.3.

Section 3.8 The classical vector operations in R3

These classical vector operations are grad, div, curl and 4 have only to do with
scalar fields and vector fields. In this section we give coordinate free definitons of
these operations. Hereby will, beside the operators d and ∗, also the isomorphism
GX : TX (Rn) → T∗X (Rn) play a role of importance. This is determined by the cho-
sen inner product, see Subsection 3.4.2. We consider here the usual inner product on
R3and the orthogonal coordinates {xi

}. Furthermore we use the scale factors hi. With
the help of these scale factors, the components of the fundamental tensor field gi j can

be written as gi j = δi j h2
i . Furthermore are the bases

{
1
hi

∂

∂xi

}
and

{
hi dxi

}
orthonormal

in every tangent space TX (Rn) and its dual. Further holds that GX

(
1
hi

∂

∂xi

)
= hi dxi,

wherein may not be summed over i.

3.8.1 The gradient
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Let φ be a scalar field.

Definition 3.8.1 The gradient of φ is the vector field gradφ,
defined by gradφ = G−1 dφ. �

The components of gradφ, belonging to the coordinates xi, are given by (gradφ)i =

gi j∂φ

∂x j . In the classical literature it is customary, when there are used orthogonal curvi-
linear coordinates, to give the components of vector fields with respect to orthonormal
bases. Because gi j = h−2

i δi j, is the gradient of φ with respect to the orthonormal base{
1
hi

∂

∂xi

}
to write as

gradφ =
1
h1

∂φ

∂x1
1
h1

∂

∂x1 +
1
h2

∂φ

∂x2
1
h2

∂

∂x2 +
1
h3

∂φ

∂x3
1
h3

∂

∂x3 .

Apparently are the components, with respect to this base, given by 1
hi

∂φ

∂xi .

3.8.2 The curl

Let α be a vector field.

Definition 3.8.2 The curl of α is the vector field curlα,
defined by curlα = G−1

∗ dGα. �

We work out the curl of α for orthogonal coordinates xi. Write

α = α1 1
h1

∂

∂x1 + α2 1
h2

∂

∂x2 + α3 1
h3

∂

∂x3 ,

than holds

Gα = α1 h1 dx1 + α2 h2 dx2 + α3 h3 dx3,

such that

dGα =

(
∂α2 h2
∂x1 −

∂α1 h1
∂x2

)
dx1
∧ dx2 +

(
∂α3 h3
∂x1 −

∂α1 h1
∂x3

)
dx1
∧ dx3 +(

∂α3 h3
∂x2 −

∂α2 h2
∂x3

)
dx2
∧ dx3.
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To calculate the Hodge image of dGα, we want that the basis vectors are orthonormal.

Therefore we write dx1
∧ dx2 =

1
h1 h2

(
h1dx1

∧ h2dx2
)
, than follows that ∗dx1

∧ dx2 =

h3
h1 h2

dx3. With a similar notation for the dx1
∧ dx3 and dx2

∧ dx3 it follows that

∗ dGα =
1

h2 h3

(
∂α3 h3
∂x2 −

∂α2 h2
∂x3

)
h1dx1 +

1
h1 h3

(
∂α1 h1
∂x3 −

∂α3 h3
∂x1

)
h2dx2

1
h1 h2

(
∂α2 h2
∂x1 −

∂α1 h1
∂x2

)
h3dx3,

such that we finally find that

curlα =
1

h2 h3

(
∂α3 h3
∂x2 −

∂α2 h2
∂x3

)
1
h1

∂

∂x1 +
1

h1 h3

(
∂α1 h1
∂x3 −

∂α3 h3
∂x1

)
1
h2

∂

∂x2 +

1
h1 h2

(
∂α2 h2
∂x1 −

∂α1 h1
∂x2

)
1
h3

∂

∂x3 .

3.8.3 The divergence

Let α be a vector field.

Definition 3.8.3 The divergence of α is the scalar field divα,
defined by divα = ∗d ∗ Gα. �

We write again

α = α1 1
h1

∂

∂x1 + α2 1
h2

∂

∂x2 + α3 1
h3

∂

∂x3 ,

than holds

∗Gα = α1 h2 h3 dx2
∧ dx3

− α2 h1 h3 dx1
∧ dx3 + α3 h1 h2 dx1

∧ dx2,

such that

d ∗ Gα =

(
∂α1 h2 h3
∂x1 +

∂α2 h1 h3
∂x2 +

∂α3 h1 h2
∂x3

)
dx1
∧ dx2

∧ dx3

and so we get

divα =
1

h1 h2 h2

(
∂α1 h2 h3
∂x1 +

∂α2 h1 h3
∂x2 +

∂α3 h1 h2
∂x3

)
.
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This is the well-known formula, which will also be found, if the divergence of α is
written out as given in Definition 3.6.8.

3.8.4 The Laplace operator

This differential operator we define here for scalar fields and for vector fields.

Definition 3.8.4 Let φ be a scalar field, than the Laplace operator for φ, notation
4φ, is defined by

4φ = div gradφ = ∗d ∗ dφ .

�

Note that out of Definition 3.7.1 follows that 4φ = (∗d ∗ d − d ∗ d ∗) φ. The second
term gives zero, such the above given definition is consistent with Definition 3.7.1.

Definition 3.8.5 Let α be a vector field, than the Laplace operator for α, notation
4α, is defined by

4α = −G−1 (∗d ∗ d − d ∗ d ∗) Gα.

�

Note that graddivα = G−1 d ∗ d ∗ G and that curl curlα = G−1
∗ d ∗ dGα, hereby

follows that the above given definition is consistent with the classical formula

4α = graddivα − curl curlα .

All formulas out of the classical vector analysis are in such a way to prove. See
(Abraham et al., 2001) ,Manifolds, · · ·, page 379, Exercise 6.4B.
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Section 3.9 Exercises
1. Determine the Christoffel symbols belonging to the cylindrical and spherical co-

ordinates on R3.

2. Prove Lemma 3.6.2.
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Section 3.10 RRvH: Overall example(s)

3.10.1 Helicoidal coordinates

Define x = (x, y, z) ∈ R3, with the following coordinates x = ξ cosθ + η sinθ,
y = −ξ sinθ + η cosθ,
z = θ.

The determinant of the Jacobian matrix is given by

J =

∣∣∣∣∣∂ x∂ξ ∂ x
∂η

∂ x
∂θ

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
cosθ sinθ −ξ sinθ + η sinθ
− sinθ cosθ −ξ cosθ − η sinθ

0 0 1

∣∣∣∣∣∣∣∣ = 1.

The inverse coordinate transformation is given by ξ = x cos z − y sin z,
η = x sin z + y cos z,
θ = z.
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Chapter 4 Differential Geometry
Section 4.1 Differential geometry of curves in R3

4.1.1 Space curves

With respect to the standard basis {Ei} is every point X ∈ R3 to write as X = xi Ei. Let
now xi be real functions of a real parameter t, where t runs through a certain interval
I. We suppose that the functions xi are enough times differentiable, such that in the
future no difficulties arise with respect to differentiation. Further we assume that the

derivatives dxi

dt
are not simultaneously equal to zero, for any value of t ∈ I.

Definition 4.1.1 A space curve K is the set of points X = X(t) = xi(t) Ei. Hereby
runs t through the interval I. De map t 7→ X(t) is injective and smooth enough. �

We call the representation xi(t) of the space curve K a parameter representation. The

vector dxi

dt
Ei is the tangent vector to the space curve at the point X, which will also be

written as dX
dt

. Another parametrisation of K can be obtained by replacing t by f (u).
Hereby is f a monotonic function, such that f (u) runs through the interval I, if the
parameter u runs through some interval J. Also the function f is expected to be enough
times differentiable and such that the first order derivative is not equal to zero for any
value of u. We call the transition to another parametric representation, by the way of
t = f (u), a parameter transformation. Note that there are infinitely many parametric
representations of one and the same space curve K.

Example(s): 4.1.1 A circular helix can be parametrised by

x1(t) = a cos t, x2(t) = a sin t, x3(t) = h t,

where a and h are constants and t basically runs through R.

The arclength of a (finite) curve K ( a finite curve is also called arc) described by the
parametric representation xi(t), with t0 ≤ τ ≤ t, is given by

s(t) =

∫ t

t0

√(
dx1(τ)

dτ

)2

+

(
dx2(τ)

dτ

)2

+

(
dx3(τ)

dτ

)2

dτ. (4.1)
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The introduced function s, wewant to use as parameter for space curves. The parameter
is then s and is called arclength. The integral given in 4.1 is most often difficult, or not
all, to determine. Therefore we use the arclength parametrisation of a space curve only
for theoretical purposes.

Henceforth we consider the Euclidean inner product on R3. Out of the main theorem
of the integration follows than that(ds

dt

)2
=

(dX
dt
,

dX
dt

)
. (4.2)

The derivative of s to t is the length of the tangent vector. If s is chosen as parameter of
K, than holds (dX

ds
,

dX
ds

)
=

(dt
ds

)2 (dX
dt
,

dX
dt

)
=

(dt
ds

)2 (ds
dt

)2
= 1, (4.3)

where we used Formula 4.2. Property 4.3 makes the use of the arclength as parameter

so special. In future we use for the vector dX
ds

a special notation, namely Ẋ.

Example(s): 4.1.2 Look to the circular helix, as introduced in Example 4.1.1, with
the start value t = 0. There holds that s(t) = t

√

a2 + h2.
Note that indeed

(
Ẋ, Ẋ

)
= 1.

The tangent vector Ẋ is the tangent vector to K, with length 1.

Definition 4.1.2 The tangent line to a curve K at the point X is straight line given
by the parametric representation

Y = X + λ Ẋ.

�

The parameter λ in this definition is in such a way that |λ| gives the distance from the
tangent point X along this tangent line.

Definition 4.1.3 The osculation plane to a curve K at the point X is the plane that
is given by the parametric representation

Y = X + λ Ẋ + µ Ẍ.

�
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The, in Definition 4.1.3, given parametric representation of the osculation plane is
equivalent to the equation

det
(
Y − X, Ẋ, Ẍ

)
= 0.

Here we assumed that Ẋ and Ẍ are linear independent and in particular that Ẍ 6= 0.
Geometrically it means that X is no inflection point. Also in inflection points can be
defined an osculation plane. An equation of the osculation plane in a inflection point
X is given by

det
(
Y − X, Ẋ, d3 X

ds3

)
= 0.

For some arbitrary parametrisation of a space curve K, with parameter t, the parameter
representation of the tangent line and the osculation plane in X, with Ẍ 6= 0, are given
by

Y = X + λ
dX
dt

and

Y = X + λ
dX
dt

+ µ
d2 X
dt2 .

Example(s): 4.1.3 Look to the circular helix, as introduced in Example 4.1.1. An
equation of the osculation plane, in the point X, is given by

h x1 sin t − h x2 cos t + a x3
− a h t = 0.

Note that this point passes through the point x1 = 0, x2 = 0, x3 = h t.

4.1.2 The Frenet formulas
In the literature these formulas are also known as the Frenet-Serret formulas, or Serret-
Frenet formulas.

Let K be a space curve, parametrised by the arclength s. Let X be a fixed point at K
but it is no inflection point. The tangent vector Ẋ is a unit vector, which in the future
will be called ı, so Ẋ = ı. A straight line through the point X, perpendicular to the
tangent line in X, is called normal. The normals in X form a plane, the normal plane in
X. The normal in X, which lies in the osculation plane is called the principal normal.
The normal, perpendicular to the principal normal, is called the binormal. The plane
spanned by the tangent vector and the binormal is called the rectifying plane. Because
of the fact that a unit vector does not change of length, holds that (Ẋ, Ẍ) = 0, so Ẍ
stays perpendicular to ı, but it’s length has naturally not to be equal to 1. The vector ı̇
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is called the curvature vector. We introduce the vectors n and b, both are unit vectors
on the straight lines of the principal normal and the binormal. We agree that n points
in the direction of Ẍ and that b points in the direction of Ẋ × Ẍ. The vectors ı, n and b
are oriented on such a way that

b = ı × n, n = b × ı, ı = n × b.

Let Y be a point in the neighbourhood of X at the space curve K. Let 4φ be the angle
between the tangent lines in X and Y and let 4ψ be the angle between the binormals in
X and Y. Note that 4ψ is also the angle between the osculation planes in X and Y.

Definition 4.1.4 The curvature ρ and the torsion τ of the space curve K in the
point X is defined by

ρ2 =

(
dφ
ds

)2
= lim
4s→0

(
4φ

4s

)2
, (4.4)

τ2 =

(
dψ
ds

)2
= lim
4s→0

(
4ψ

4s

)2
. (4.5)

We assume that ρ > 0. The sign of τwill be determined later on. �

Lemma 4.1.1 There holds that ρ2 = (ı, ı) and τ2 =
(
ḃ, ḃ

)
. �

Proof Add in a neighbourhood of X to every point of the curve an unit vector a, such
that the map s 7→ a(s) is sufficiently enough differentiable. The length of a is equal to
1, there holds that (a, a) = 1 and there follows that (a, ȧ) = 0. Differentiate this last
equation to s and there follows that (ȧ, ȧ) + (a, ä) = 0. Let 4α be the angle between
a(s) and a(s + 4s), where X(s + 4s) is point in the neighbourhood of X(s). There holds
that

cos (4α) = (a(s), a(s + 4s)).

A simple goniometric formula and a Taylor expansion gives as result that

1 − 2 sin2 (1
2
4α) = (a(s), a(s) + (4s) ȧ(s) +

1
2

(4s)2 ä(s) + O((4s)3)), 4s → 0,

so
4 sin2 (1

24α)
(4s)2 = −(a(s), ä(s)), 4s → 0.

Note that sin x
x

= 1, for x→ 0, such that
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lim
4s→ 0

(
4α
4s

)2
= (ȧ, ȧ).

Choose for a successively ı and b, and the statement follows. �

The curvature of a curve is a measure for the change of direction of the tangent line.

R =
1
ρ
is called the radius of curvature. So far we have confined ourselves till points at

K which are no inflection points. But it is easy to define the curvature in an inflection
point. In an inflection point is Ẍ = 0, such that with Lemma 4.1.1 follows that ρ = 0.
The reverse is also true, the curvature in a point is equal to zero if and only if that point
is an inflection point.
For the torsionwe have a similar geometrical characterisation. The torsion is zero if and
only if the curve belongs to a fixed plane. The torsion measures the speed of rotation
of the binormal vector at some point of the curve.
The three vectors ı, n and b form in each point a orthonormal basis. The consequence
is that the derivative of each of these vectors is a linear combination of the other two.
These relations we describe in the following theorem. They are called the formules of
Frenet.

Theorem 4.1.1 The formules of Frenet read

ı̇ = ρn, (4.6)

ṅ = −ρ ı + τb, (4.7)

ḃ = − τn, (4.8)

The sign of τ is now also defined. The sign of τ has to be taken so that Equation 4.8
is satisfied. �

Proof The definition of ı̇ is such that it is a multiple of n. Out of Lemma 4.1.1 it follows
that the length of ı̇ is equal to ρ and so there follows directly Equation 4.6.
With the result of above we conclude that (ı̇, b) = 0. The fact that (b, ı) = 0 there
follows that (ḃ, ı) = −(b, ı̇) = 0. Hereby follows that ḃ is a multiple of n. Out of
Lemma 4.1.1 follows that |τ| is the length of b. Because of the agreement about the sign
of τ, we have Equation 4.8.
Because (n, ı) = 0 there follows that (ṅ, ı) = −(n, ı̇) = −ρ and because (n, b) = 0
there follows that (ṅ, b) = −(n, ḃ) = τ, such that

ṅ = (ṅ, ı) ı + (ṅ, b)b = −ρ ı + τb,

and Equation 4.7 is proved. �

They call the positive oriented basis {ı, n, b} the Frenet frame or also the Frenet trihe-
dron, the repÃĺre mobile, and the moving frame. Build the of the arclength depend
matrix



115

F = (ı, n, b},

then holds that FT F = I and det = 1, so the matrix F is direct orthogonal (so, orthog-
onal and detF = 1). The formulas of Frenet can now be written as

d
ds

F = F R, with R =


0 −ρ 0
ρ 0 −τ
0 τ 0

 . (4.9)

Theorem 4.1.2 Two curves with the same curvature and torsion as functions
of the arclength are identical except for position and orientation in space. With a
translation and a rigid rotation one of the curves can be moved to coincide with
the other. The equations ρ = ρ(s) and τ = τ(s) are called the natural equations of
the curve. �

Proof Let the given functions ρ and τ be continuous functions of s ∈ [0, a), with
a some positive constant. To prove that there exists a curve K of which the curvature
and the torsion are given by respectively ρ and τ. But also to prove that this curve K is
uniquely determined apart from a translation and a rigid rotation. The equations 4.9
can be interpreted as a linear coupled system of 9 ordinary differential equations. With
the existence and uniqueness results out of the theory of ordinary differential equations
follows that there exists just one continuous differentiable solution F(s) of differential
equation 4.9, to some initial condition F(0). This matrix F(0) is naturally a direct or-
thonormal matrix. The question is wether F(s) is for all s ∈ [0, a) a direct orthonor-
mal matrix? Out of Ḟ = F R follows that ḞT = RT FT = −R FT. There holds that
Ḟ FT = F R FT and F ḞT = −F R FT, that means that d

ds
(
F FT

)
= 0. The matrix F(s) FT(s)

is constant and has to be equal to F(0) FT(0) = I. Out of the continuity of F(s) follows
that detF(s) = detF(0) = 1. So the matrix F(s) is indeed for every s ∈ [0, a) a direct or-
thonormalmatrix. Thematrix F(s) gives the vectors ı, n and b, fromwhich the searched
curve follows.
The arclength parametrisation of this curve is given by

X(s) = a +

∫ s

0
ıds,

where a is an arbitrary chosen vector. Out of this follows directly the freedom of trans-
lation of the curve.
Let F̃(0) be another initial condition and let F̃(s) be the associated solution. Because of
the fact that columns of F̃(0) form an orthonormal basis, there exist a rigid rotation to
transform F̃(0) into F(0). So there exists a constant direct orthogonal matrix S, such that
F̃(0) = S F(0). The associated solution is given by F̃(s) = S F(s), because

d
ds

(S F(s)) = S d
ds

F(s) = S F(s) R.
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Based on the uniqueness, we conclude that F̃(s) can be found from the solution F(s) and
a rigid rotation. �

A space curve is, apart from its place in the space, completely determined by the func-
tions ρ(s) and τ(s). They characterize the space curve. This means that all properties of
the curve, as far they are independent of its place in the space, can be expressed through
relations in ρ and τ. We shall give some characterisation of curves with the help of the
curvature and the torsion. Note that out of the equations of Frenet follows that

ρ ḃ + τ ı̇ = 0. (4.10)

We treat the following cases:

1. τ = 0.
Out of Equation 4.8 follows that ḃ = 0, such that

d
ds

(X(s), b) = (Ẋ, b) + (X, ḃ) = (ı, b) = 0.

Evidently is (X(s), b) a constant, say α. Than holds that X(s) − αb for every s lies in
a plane perpendicular to b. The space curve lies in a fixed plane.

2. ρ = 0.
Out of Equation 4.6 follows that ı̇ = 0, such that

X(s) = a + s ı(0).

So the space curve is a straight line.

3. ρ = constant and nonzero, τ = 0.
We know already that the space curve lies in a fixed plane. There holds that

d3

ds3 X = ı̈ =
d
ds

(ρn) = ρn = −ρ2 ı,

that means that
1
ρ2

d3

ds3 X + Ẋ = 0,

such that ρ−2 Ẍ + X = m, withm a constant vector. There follows that

|X − m| =
1
ρ2 |Ẍ| =

1
ρ
|n| =

1
ρ
,

so the space curve is a circle with centerm and radius ρ−1.

4. τ
ρ

= constant, with ρ and τ both nonzero.

Out of Equation 4.10 follows that b +
τ
ρ
ı is constant, let say to u. Note that (u, u) =

1 +
τ2

ρ2 and (u, b) = 1 such that out of



117

Ẋ −
ρ

τ
u = −

ρ

τ
b

follows that (
Ẋ −

ρ

τ
u, u

)
= −

ρ

τ
= −

ρ

τ

(
1 +

τ2

ρ2

)−1
(u, u), (4.11)

so (
Ẋ −

ρ τ

ρ2 + τ2 u, u
)

= 0.

Evidently is
(
X − ρ τ

ρ2 + τ2 su, u
)
a constant and equal to (X(0),u). The vector X −

ρ τ
ρ2 + τ2 su lies for every s in a plane perpendicular tou and throughX(0). We conclude
that the space curve is a cylindrical helix.

Notice(s): 4.1.1

• The tangent vector Ẋ makes a constant angle with some fixed vector u,
see Equation 4.11.

• The function h(s) = (X(s) − X(0), u) tells how X(s) has "risen"in the direction

u, since leaving X(0). And dh
ds

=
(
Ẋ, u

)
is constant, so h(s) rises at a constant

rate relative to the arclength.

5. ρ = constant and nonzero, τ = constant and nonzero.
We know already that the space curve is a cylindrical helix. There holds that

d3

ds3 X = ı̈ = −ρ2 ı + ρ τb = −ρ2 ı + ρ τu − τ2 ı,

where u is the same constant vector as used in the previous example. There follows
that

1
ρ2 + τ2

d3

ds3 X + Ẋ −
ρ τ

ρ2 + τ2 u = 0.

Evidently is the vector 1
ρ2 + τ2

d2

ds2 X + X −
ρ τ

ρ2 + τ2 su constant and equal to the

constant vectorm, withm =
ρ

ρ2 + τ2 n(0) + X(0). We conclude that

X(s) −
ρ τ

ρ2 + τ2 su − m = −
ρ

ρ2 + τ2 n(s),

such that ∣∣∣∣∣∣X(s) −
ρ τ

ρ2 + τ2 su − m
∣∣∣∣∣∣ =

ρ

ρ2 + τ2 .
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The space curve is, aswe already know, a cylindrical helix, especially a circular helix.

Section 4.2 Differential geometry of surfaces in R3

4.2.1 Surfaces

We consider again the standard basis {Ei} of R3, with which every point X ∈ R3 can
be written as X = xi Ei. Let xi be real functions of the two real parameters u1 and
u2, with (u1, u2) ∈ R ⊂ ΩR2 and Ω open. We suppose that that the functions xi are
enough times differentiable to both variables, such that in the remainder there will
be no difficulties with respect to differentiation. Further we assume that the matrix,

formed by the partial derivatives ∂ xi

∂u j , has rank two. This means that the vectors ∂1X
and ∂2X are linear independent in every point X. (We use in this section the notation

∂ j for
∂

∂u j ).

Definition 4.2.1 A surface S in R3 is the set of points X = X(u1, u2) =
xi(u1, u2) Ei with (u1, u2) ∈ Ω. �

We call the functions xi = xi(u j) a parametric representation of the surface S. The para-
meters u j are the coordinates at the surface. If one of these coordinates is kept constant,
there is described a curve at the surface. Such a curve belongs to the parametric rep-
resentation and is called a parametric curve. The condition that the rank of the matrix[
∂ jxi

]
is equal to two expresses the fact that the two parametric curves u1 = constant and

u2 = constant can not fall together. Just as the curves in R3, there are infinitely many
possibilities to describe the same surface S with the help of a parametric representa-
tion. With the help of the substitution u1 = u1(u1′ , u2′), u2 = u2(u1′ , u2′), where we

suppose that the determinant of the matrix
[
∂ui

∂ui′

]
is nonzero, there is obtained a new

parametric representation of the surface S, with the coordinates ui′ . The assumption

that det
[
∂ui

∂ui′

]
6= 0 is again guaranteed by the fact that the rank of the matrix

[
∂ jxi

]
is

equal to two. From now on the notation of the partial derivatives ∂ui

∂ui′ will be Ai
i′ .

Let S be a surface in R3 with the coordinates ui. A curve K at the surface S can be de-
scribed by ui = ui(t), where t is a parameter for K. The tangent vector in a point X at
this curve is given by
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dX
dt

=
dui

dt
∂iX,

which is a combination of the vectors ∂1X and ∂2X. The tangent lines in X to all the
curves through X at the surface lie in a plane. This plane is the tangent plane in X to
S, notation TX(S). This tangent plane is a 2−dimensional linear subspace of the tangent
space TX(R3). The vectors ∂1X and ∂2X form on a natural way a basis of this subspace.
With the transition to other coordinates ui′ holds ∂i′X = Ai

i′ ∂iX, this means that in the
tangent plane there is a transistion to another basis.

Example(s): 4.2.1 A sphere with radius R can be described by the parametric
representation

x1(θ, φ) = R sinθ cosφ, x2(θ, φ) = R sinθ sinφ, x3(θ, φ) = R cosθ,

with 0 < θ < π and 0 < φ < 2π. Note that the rank of the matrix formed by the
columns ∂θX and ∂φX is equal to two, if θ 6= 0 and θ 6= π.

4.2.2 The first fundamental tensor field

Let S be a surface, parametrisedwith the coordinates u1 and u2. In every point X ∈ S we
notate the tangent plane in X to S by TX(S). This space is a two-dimensional subspace
of the tangent space TX(R3) in X. The basis of this space is {∂iX}, which is determined
by the parametrisation X = X(ui). Let (·, ·) be the Euclidean inner product at R3. This
inner product can be transferred on a natural way to the tangent space TX(R3). The
obtained inner product at TX(R3) we notate by (·, ·)X, see also Subsection 3.4.2. This
innerproduct is naturally also an inner product at the subspace TX(S).

Definition 4.2.2 Thefirst fundamental tensor field is the fundamental tensor field
that adds the inner product to TX(S). Out of convenience, we notate the first fun-
damental tensor field by g. �

The components of the first fundamental tensor field, belonging to the coordinates ui,
are given by

gi j = (∂iX, ∂ jX)X,

such that g can be written as g = gi j dui
⊗ du j. Hereby is {du1, du2

} the reciprocal
basis, which belongs to the basis {∂1X, ∂2X}.
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The vectors ∂1X and ∂2X are tangent vectors to the parameter curves u2 = C and u1 =
C. If the parameters curves intersect each other at an angle α, than holds that

cosα =
(∂1X, ∂2X)X
|∂1X| |∂2X|

=
g12

√g11 g22
.

It is evident that the parameter curves intersect each other perpendicular, if g12 = 0. A
parametrisation ui of a surface S is called orthogonal if g12 = 0.

Example(s): 4.2.2 The in Example 4.2.1 given parametrisation of a sphere with
radius R is orthogonal. Because there holds that g11 = R2, g22 = R2 sin2 θ and
g12 = g21 = 0.

4.2.3 The second fundamental tensor field

Let S be a surface inR3 with parametrisation xi = xi(u j). In a pointX are the vectors ∂ jX
tangent vectors to the parameter curves through X. They form a basis of the tangent
plane TX(S). Let NX be the vector in X perpendicular to TX(S), with length 1 and it
points in the direction of ∂1X × ∂2X. A basis of TX(R3) is formed by the vectors ∂1X ×
∂2X and NX.
The derivatives ∂i∂ jX are linear combinations of the vectors ∂1X, ∂2X andNX. We note
this as follows

∂i∂ jX =

{
k

i j

}
∂kX + hi j NX. (4.12)

The notation
{

k
i j

}
indicates an analogy with the in Subsection 3.6.3 introduced

Christoffel symbols. Later this will become clear.
Out of the representation 4.12 follows

(∂i∂ jX, ∂lX) =

{
m

i j

}
gml + hi j (NX, ∂lX) =

{
m

i j

}
gml,

such that {
k

i j

}
= gkl (∂i∂ jX, ∂lX).

It is clear that

hi j = (∂i∂ jX,NX). (4.13)
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Lemma 4.2.1 TheChristoffel symbols are not the components of a
(1
2
)
-tensor field,

the functions hi j are the components of a covariant 2-tensor field.

Proof Let xi(u j′) be a second parametric representation of the surface S. There holds
that {

k′
i′ j′

}
= gk′l′ (∂i′∂ j′X, ∂l′X) = Ak′

k A j
j′ A

i
i′

{
k

i j

}
+ Ak′

k (∂i′Ak
j′).

The second term is in general not equal to zero, so the Christoffel symbols are not the
components of a tensor field. ( See also Formula 3.8, the difference is the inner product!)
Furthermore holds that

hi′ j′ = (∂i′∂ j′X,NX) = (∂i′(A
j
j′ ∂ jX),NX) = ((∂i′A

j′
j )∂ jX + A j

j′ (∂i′∂ jX),NX)

= A j
j′ (∂i′∂ jX,NX) = A j

j′ A
i
i′ (∂i∂ jX,NX) = A j

j′ A
i
i′ hi j,

from which follows that the functions hi j are the components of a tensor field. �

Definition 4.2.3 The second fundamental tensor field is the covariant 2-tensor
field of which the components, with respect to the base uk, are given by hi j, so
h = hi j dui

⊗ du j. �

Lemma 4.2.2 The Christoffel symbols are completely described with the help of
the components of the first fundamental tensor field. There holds that{

k
i j

}
=

1
2

gkl (∂ig jl + ∂ jgli − ∂lgi j). (4.14)

Proof There holds that

∂ig jl = ∂i(∂ jX, ∂lX) = (∂i∂ jX, ∂lX) + (∂ jX, ∂i∂lX),

∂ jgli = ∂ j(∂lX, ∂iX) = (∂ j∂lX, ∂iX) + (∂lX, ∂ j∂iX),

∂lgi j = ∂l(∂iX, ∂ jX) = (∂l∂iX, ∂ jX) + (∂iX, ∂l∂ jX),

such that

∂ig jl + ∂ jgli − ∂lgi j = 2 (∂i∂ jX, ∂lX) = 2 glk

{
k

i j

}
,

from which Formula 4.14 easily follows. �

Note that Formula 4.14 corresponds with Formula 3.9.
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Theorem 4.2.1 The intersection of a surface S with a flat plane, that lies in some
small neighbourhood of a point X at S and is parallel to TX(S), is in the first approx-
imation a hyperbola, ellipse or a pair of parallel lines and is completely determined
by the second fundamental tensor. �

Proof We take Cartesian coordinates x, y and z inR3 such that X is the origin and the
tangent plane TX(S) coincides with the plane z = 0. In a sufficiently small neighbour-
hood of the origin, the surface S can be descibed by an equation of the form z = f (x, y).
A parametric representation of S is given by x1 = x, x2 = y and x3 = z = f (x, y). We
assume that the function f is enough times differentiable, such that in a neighbourhood
of the origin the equation of S can written as

z = f (x, y) = f (0, 0) +
∂ f
∂x

(0, 0) +
∂ f
∂y

(0, 0) +
1
2

(r x2 + 2 s x y + t y2) + h.o.t.

=
1
2

(r x2 + 2 s x y + t y2) + h.o.t.,

with

r =
∂2 f
∂x2 (0, 0), r =

∂2 f
∂x ∂y

(0, 0) and t =
∂2 f
∂y2 (0, 0).

The abbreviation h.o.t. means higher order terms. A plane that lies close to X and is
parallel to the tangent plane to S at X is described by z = ε, with ε small enough. The
intersection of this plane with X is given in a first order approximation by the equation

r x2 + 2 s x y + t y2 = 2 ε.

The tangent vectors to the coordinate curves, with respect to the coordinates x and y,
in the origin, are given by

∂xX =

(
1, 0,

∂ f
∂x

)T

and

∂yX =

(
1, 0,

∂ f
∂y

)T
,

such that in the origin holds

∂x∂xX = (0, 0, r)T, ∂x∂yX = (0, 0, s)T and ∂y∂yX = (0, 0, t)T.

Furthermore holds in the origin X = 0 that NX = (0. 0 1)T. It is evident that h11 =
r, h12 = h21 = s, h22 = t, see Formula 4.13, such that the equation of the intersection is
given by

h11 x2 + 2 h12 x y + h22 y2 = 2 ε.
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We conclude that the intersection is completely determined by the numbers hi j and that
the intersection is an ellipse if det[hi j] > 0, a hyperbola if det[hi j] < 0 and a pair of
parallel lines if det[hi j] = 0. �

This section will be closed with a handy formula to calculate the components of the
second fundamental tensor field. Note that ∂1X × ∂1X = λNX, with λ = |∂1X × ∂2X|.
This λ can be represented with components of the first fundamental tensor field. There
holds

λ = |∂1X| |∂2X| sinϑ,

with ϑ the angle between ∂1X and ∂2X, such that 0 < ϑ < π. There follows that

λ =

√
g11 g22 (1 − cos2 ϑ) =

√
g11 g22 (1 −

g2
12

g11 g22
) =

√
g11 g22 − g2

12 =
√
det[gi j].

Furthermore is

hi j = (∂i∂ jX,NX) =
1
λ

(∂1X × ∂2X, ∂i∂ jX) =
1√

det[gi j]
det(∂1X, ∂2X, ∂i∂ jX).

4.2.4 Curves at a surface

Let S be a surface in R3 with the parametric representation xi = xi(u j). Furthermore is
K a curve at S, parametrised by its arclength s, so u j = u j(s), such that xi = xi(u j(s)).
We notated the differentation of u j to s, just as done earlier, with u̇ j. The unit tangent
vector at K in a point X is the vector ı, which lies in the tangent plane TX(S). There holds

ı = Ẋ = u̇ j ∂ jX.

The curvature vector Ẍ is the vector along the principal normal of the curve K and
satisfies

Ẍ = ı̇ = ü j ∂ jX + u̇ j u̇k ∂k∂ jX = ü j ∂ jX + u̇ j u̇k


 l

k j

 ∂lX + hkj NX


=

ül + u̇ j u̇k

 l

j k


 ∂lX + u̇ j u̇k h jk NX. (4.15)

The length of the curvature vector is given by the curvature ρ in X ( see Lemma 4.1.1).

Definition 4.2.4 The geodesic curvature of K is the length of the projection of Ẍ
onto the tangent plane TX(S). �
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It is, with the help of Formula 4.15, easy to see that the geodesic curvature can be calu-
lated with the help of the formula√(

üi +

{
i

l k

}
u̇l u̇k

) (
ü j +

{
j

p q

}
u̇p u̇q

)
gi j. (4.16)

Note that the geodesic curvature only depends on components of the first fundamental
tensor field.

Definition 4.2.5 The principal curvature of K in a point X is the length of Ẍ at
NX. �

Out of Formula 4.15 follows that the principal curvature is given by u̇ j u̇k h jk. Note that
the principal curvature only depends on the components of the second fundamental
tensor field and the values of u̇i. These last values determine the direction of ı. This
means that different curves at the surface S, with the same tangent vector in a point X
at S, have an equal principal curvature. This result is known as the theoremofMeusnier

Definition 4.2.6 A geodesic line or geodesic of the surface S is a curve at S, of
which in every point the principal normal and the normal at the surface fall to-
gether. �

Out of Formula 4.15 follows that a geodesic is decribed by the equations

üi +

{
i

j k

}
u̇ j u̇k = 0. (4.17)

This is a non-linear inhomogeneous coupled system of two ordinary differential equa-
tions of the second order in u1 and u2. An analytic solution is most of the time difficult
or not at all to determine. Out of the theory of ordinary differential equations follows
that there is exactly one geodesic line through a given point and a given direction.
If a curve is not parametrised with its arclength, but with another parameter, for in-
stance t, then is the arclength given by Formula 4.1. This formula can be expressed by
the coordinates u j and the components of the first fundamental tensor field. It is easy
to see that the arclength s of a curve K at S, with parameter t, between the points t = t0
and t = t1 is given by

s =

∫ t1

t0

√
gi j

dui

dt
du j

dt
dt (4.18)

We use this formula to prove the following theorem.
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Theorem 4.2.2 Let X0 and X1 be given points at S and K a curve at S through X0
and X1. If the curve K has minimal length than is K a geodesic. �

Proof Let K have minimal length and parametrised by its arclength s,
with s0 ≤ s ≤ s1. So X0 = xi(u j(s0)) Ei and X1 = xi(u j(s1)) Ei. Define de function T by

T(uk, u̇k) =
√

gi j(uk) u̇i u̇ j.

Note that T has the value 1 in every point of K. We vary now K on a differentiable
way on the surface S, where we keep the points X0 and X1 fixed. So we obtain a new
curve K̃. This curve K̃ can be represented by u j(s) + ε η j(s), with η j differentiable and
η j(s0) = η j(s1) = 0. The parameter s is not necessarily the arclength parameter of K̃.
Consequently the length of K̃ is given by∫ s1

s0

√
gi j(uk + ε ηk)

d(ui + ε ηi)
ds

d(u j + ε η j

ds
)ds =

∫ s1

s0

T(uk + ε ηk, u̇k + ε η̇k) ds.

Because the length of K is minimal, the expression above has it’s minimum for ε = 0,
that means that

d
dε

(∫ s1

s0

T(uk + ε ηk, u̇k + ε η̇k) ds
)
ε= 0

= 0.

Out of this follows∫ s1

s0

(
ηk ∂T
∂uk + η̇k ∂T

∂u̇k

)
ds =

∫ s1

s0

ηk
(
∂T
∂uk −

d
ds

∂T
∂u̇k

)
ds = 0, (4.19)

hereby is used partial integration and there is used that ηk(s0) = ηk(s1) = 0. Because
Formula 4.19 should apply to every function ηk, we find that

∂T
∂uk −

d
ds

∂T
∂u̇k = 0. (4.20)

Because of the fact that T in every point ofK takes the value 1, it is no problem to replace
T by T2 in Formula 4.20 and the equations become

∂

∂uk

(
gi j u̇i u̇ j

)
−

d
ds

∂

∂u̇k

(
gi j u̇i u̇ j

)
= 0,

or

u̇i u̇ j ∂kgi j −
d
ds

(
gki u̇i + gkj u̇ j

)
= 0,

or

u̇i u̇ j ∂kgi j −
(
2üi gki + (∂ jgki + ∂igkj) u̇i u̇ j

)
= 0,

or

2 gki üi + (∂igkj + ∂ jgki − ∂kgi j) u̇i u̇ j = 0,
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or

üi +

{
k

i j

}
u̇i u̇ j = 0.

This are exactly the equations for geodesic lines. Because of the fact that K satisfies
these equations, is K a geodesic through X0 and X1. �

4.2.5 The covariant derivative at surfaces

Let S be a surface in R3 with the parametrisation xi = xi(u j) and let K be a curve at S
with the parametrisation ui = u j(t). Furthermore is v(t) for every t a vector in TX(t)(S).
Such a vector field v is called a tangent vector field to S, defined at the points of the
curve K. The vector v can also be written as

v = vi ∂iX (u j(t)).

Example(s): 4.2.3 The vector field formed by the tangent vector to K is a tangent
vector both to S and K. This tangent vector field has contravariant components
dui(t)

dt
. There holds indeed that

dX(u j(t))
dt

=
du j(t)

dt
∂ jX(t).

Example(s): 4.2.4 The vector field formed by the basis vectors ∂ jX(t), with i fixed,
is a tangent vector field and the contravariant components are δ j

i .

Example(s): 4.2.5 The vector field formed by the reciproke basis vectors dui,
with i fixed, is a tangent vector field and has covariant components δ j

i and con-
travariant components gi j.

Let v be tangent vector field. In general, the derivative
dv(t)

dt
will not be an element of

the tangent plane TX(t)(S). In the following definition we will give an definition of a
derivative which has that property.
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Definition 4.2.7 The covariant derivative of v along K, notation ∇v
dt

,
is defined by

∇v
dt

= PX
dv
dt
,

with PX the projection at the tangent plane TX(S). �

The covariant differentiation in a point X at S is a linear operation such that the tangent
vectors at S, which grasp at the curve K, is imaged at TX(S). For every scalar field f at
K holds

∇( fv)
dt

= PX
d( fv)

dt
= PX

(
d f
dt

v + f dv
dt

)
=

d f
dt

v + f ∇v
dt
. (4.21)

Note that for every w ∈ TX(t)(S) holds that(
w,

dv
dt

)
=

(
w,
∇v
dt

)
,

becausew is perpendicular toNX. For two tangent vector fields v andw alnog the same
curve of the surface there follows that

d(v, w)
dt

=
(
v,
∇w
dt

)
+

(
∇w
dt
, w

)
. (4.22)

This formula is a rule of Leibniz.

Example(s): 4.2.6 Consider the vector field out of Example 4.2.3. Call this vec-
tor field w. The covariant derivative of this vector field along the curve K can be
expressed by Christoffel symbols. There holds

∇w
dt

= PX
dw
dt

= PX

(
d
dt

(
du j

dt
∂ jX

))
= PX

(
d2 u j

dt2 ∂ jX +
du j

dt
d
dt
∂ jX

)

= PX

(
d2 u j

dt2 ∂ jX +
du j

dt
duk

dt
∂k∂ jX

)
=

d2 u j

dt2 ∂ jX +
du j

dt
duk

dt

 l

k j

∂lX

=

d2 u j

dt2 +

 j

k l

 duk

dt
dul

dt

 ∂ jX,

where we made use of Formula 4.12.
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Example(s): 4.2.7 Consider the vector field out of Example 4.2.4. Also the covari-
ant derivative of this vector field is to express in Christoffel symbols.

∇

dt
∂iX =

∇

dt
(
δ

j
i∂ jX

)
= PX

(( d
dt
δ

j
i

)
∂ jX + δ

j
i

d
dt
∂ jX

)
= δ

j
i

duk

dt

 l

k j

 ∂lX

=

 j

i k

 duk

dt
∂ jX.

Example(s): 4.2.8 Consider the vector field out of Example 4.2.5. There holds

0 =
d
dt
δ

j
i =

d
dt

(
dui, ∂ jX

)
=

(
∇

dt
dui, ∂ jX

)
+

(
dui,

∇

dt
∂ jX

)
,

where the rule of Leibniz 4.22 is used. Out of this result follows that(
∇

dt
dui, ∂ jX

)
= −

(
dui,

∇

dt
∂ jX

)
= −

(
dui,

{
l

j k

}
duk

dt
∂lX

)
= −

{
i

j k

}
duk

dt
,

such that
∇

dt
dui = −

{
i

j k

}
duk

dt
du j.

In particular, we can execute the covariant differentiation along the parameter curves.
These are obtained by taking one of the variables uk as parameter and the other variables
u j, j 6= k fixed. Then follows out of Example 4.2.7 that for the covariant derivative of the
basis vectors along the parameter curves that

∇

duk∂iX =

{
j

i l

}
dul

duk ∂ jX. (uk is the parameter instead of t.)

At the same way follows out Example 4.2.8 that the covariant derivatives of the reci-
proke basis vectors along the parameter curves are given by

∇

dul dui = −

{
i

j k

}
duk

dul du j = −

{
i

j l

}
du j. (4.23)

In general the covariant derivative of a tangent vector field v along a parameter curve
is given by

∇

dukv =
∇

duk

(
v j∂ jX

)
= ∂kv j ∂ jX + v j ∇

duk∂ jX =

(
∂kv j + vl

{
j

k l

})
∂ jX,

and here we used Formula 4.21. The covariant derivative of a tangent vector field with
respect to the reciproke basis vectors is also easily to write as
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∇

dukv =
∇

duk

(
v j du j

)
= ∂kv j du j + v j

∇

duk du j =

(
∂kv j − vl

{
l

k j

})
du j. (4.24)

Definition 4.2.8 Let v = v j ∂ jX be a tangent vector field, defined at the whole
surface S, then we define

∇kv j = ∂kv j + vl
{

j
k l

}
. (4.25)

�

Lemma 4.2.3 The functions ∇kv j, given by Formula 4.25 are the components of a(1
1
)
-tensor field at S. This tensor field is called the covariant derivative of v at S.

Proof Prove it yourself. �

Also the functions ∇kv j, defined by

∇kv j = ∂kv j − vl

{
l

k j

}
, (4.26)

see Formula 4.24, are components of a tensor field, a
(0
2
)
-tensor field.

Evenso we define covariant differentiation at S of 2-tensor fields.

Definition 4.2.9 Let φi j, φi j and φ
j
i be the components of respectively a

(0
2
)
-

tensor field, a
(2
0
)
-tensor field and a

(1
1
)
-tensor field. Then we define the functions

∇kφi j, ∇kφ
i j and ∇kφ

j
i by

∇kφi j = ∂kφi j −

 l

k i

φl j −

 l

k j

φil, (4.27)

∇kφ
i j = ∂kφ

i j +

 i

k l

φl j +

 j

k l

φil, (4.28)

∇kφ
j
i = ∂kφ

j
i +

 j

k l

φl
i −

 l

k i

φ j
l . (4.29)

�
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Lemma 4.2.4 The components of the first fundamental vector field behave by
covariant differentiation like constants, or ∇kgi j = 0 and ∇kgi j = 0.

Proof Out of Formula 4.22 follows

∂kgi j = ∂k
(
dui, du j

)
=

(
dui,

∇

duk

)
+

(
∇

duk dui, du j
)
,

such that

∂kgi j = −

{
j

l k

}
gil
−

{
i

l k

}
gl j,

where is made use of Formula 4.23. With the help of Definition 4.28 follows then
∇kgi j = 0. In a similar way it is to see that ∇kgi j = 0. �

Definition 4.2.10 Let v be a tangent vector field on K at S and write v = ui ∂iX.
This tangent vector field is called parallel (transported) along K if

∇

dt
vi∂iX =

(
dv j

dt
+

{
j

i k

}
dui

dt
vk

)
∂ jX = 0. (4.30)

�

Note that a curve K is a geodesic if and only if the tangent vector field of this curve is
parallel transported along this curve. If K is a geodesic than there holds that

∇

dt

(
dui

dt
∂iX

)
= 0.

IMPORTANT NOTE
The system of differential equations for parallel transport in 2 dimensions reads

d
dt

 v1

v2

 +



 1

l 1

dul

dt

 1

l 2

dul

dt 2

l 1

dul

dt

 2

l 2

dul

dt


 v1

v2

 =

 0

0

 .
This is mostly a nonautonomous coupled system of ordinary linear differential equa-
tions of the form 

dv1

dt
+ A11(t) v1 + A12(t) v2 = 0,

dv2

dt
+ A21(t) v1 + A22(t) v2 = 0.
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Section 4.3 Exercises
1. Let in R3, S be the spherical surface, parametrized by

x(u, v) = (sin u cos v, sin u sin v, cos u) with 0 < u < π, 0 ≤ v ≤ 2π.

a. Let Tx(S) be tangent plane to S in some arbitrary point x of S. Determine the
basis ∂ux, ∂vx, which belongs to the coordinates u, v, of Tx(S).

b. Determine the fundamental tensor field gi j of S.
c. Determine a normal vector field N on S.
d. Determine the second fundamental tensor field hi j of S.
e. Calculate the dual (= reciproke) basis du, du to ∂ux, ∂vx.

(Remark: With gi j is Tx(S) identified with its dual T∗x(S).)
f. Determine the Christoffel symbols of S.
g. What are the equation of the geodesics on S?

Argue that the parametrised curves "v = constant" are geodesics.
h. Let de curve K be given by

u =
π
4
, v = t, 0 ≤ t ≤ 2π.

This curve starts and ends in the point

a =
(1
2
√

2, 0, 1
2
√

2
)
.

Transport the vector (0, 1, 0) out of Ta(S) parallel along the curve K.
Is K a geodisc?

2. Let in R3, S be the pseudosphere, parametrized by

x(u, v) = (sin u cos v, sin u sin v, cos u + log tan u
2

) with 0 < u < π, 0 ≤ v ≤ 2π.

a. Let Tx(S) be tangent plane to S in some arbitrary point x of S. Determine the
basis ∂ux, ∂vx, which belongs to the coordinates u, v, of Tx(S).

b. Determine the fundamental tensor field gi j of S.
c. Determine a normal vector field N on S.
d. Determine the second fundamental tensor field hi j of S.
e. Calculate the dual (= reciproke) basis du, du to ∂ux, ∂vx.

(Remark: With gi j is Tx(S) identified with its dual T∗x(S).)
f. Determine the Christoffel symbols of S.

Remark:
{

1
1 2

}
=

{
2

1 1

}
=

{
2

2 2

}
= 0.

g. What are the equation of the geodesics on S?
Argue that the parametrised curves "v = constant" are geodesics.

h. Let de curve K be given by

u =
π
4
, v = t, 0 ≤ t ≤ 2π.
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This curve starts and ends in the point

a =
(1
2
√

2, 0, 1
2
√

2 + log (
√

2 − 1)
)
.

Transport the vector (0, 1, 0) out of Ta(S) parallel along the curve K.
Is K a geodisc?

3.
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Section 4.4 RRvH: Christoffel symbols?

4.4.1 Christoffel symbols

This section is just written to get some feeling about what the Christoffel symbols sym-
bolise. Let X be some point in space, with the curvilinear coordinates xi. The coordi-
nates depend on the variables ξ j, so xi(ξ j). The vector ∂ jX is tangent to the coordinate
curve of x j and the vectors {∂iX} form a basis. To this basis belongs the reciprocal basis
{y j
}, that means that (y j, ∂iX) = δ

j
i . If the standard inner product is used, they can be

calculated by taking the inverse of the matrix (∂1X · · · ∂NX).
If the point X is moved, not only the coordinates xi change, but also the basis vectors
{∂iX} and the vectors of the reciprocal basis {y j

}.
The vector ∂ j(∂iX) can be calculated and expanded in terms of the basis {∂iX}, the coe-
eficients of this expansion are the Christoffel symbols, so

∂ j∂iX =

{
k

j i

}
∂kX,

see also the similarity with Definition 3.6.4. Another notation for the Christoffel sym-

bols is Γk
ji. The symbols

{
k

j i

}
and Γk

ji are often called Christoffel symbols of the second

kind.

Comment(s): 4.4.1 Important to note is that the Christoffel symbol is NOT a
tensor with respect to an arbitrary coordinate system.

Using the reciprocal basis, the Christoffel symbols can be calculated by

(yn, ∂ j∂iX) =

{
n

j i

}
.

Most of the time the metric tensor is used to calculate the Christoffel symbols. The
metric tensor is

G = (∂1X · · · ∂NX)T(∂1X · · · ∂NX),

the matrix with all the inner products between the tangent vectors to the coordinate
axis. The inverse matrix of G is also needed and the derivatives of all these inner prod-
ucts. The inner products between different tangent vectors is notated by the coefficient
gi j = (∂iX, ∂ jX) of the matrix G.
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And with all of these, there can be constructed the formula

Γk
lm =

1
2

gkn (gmn,l + gnl,m − glm,n),

where gkn are coefficients out of the matrix G−1 and gmn,l =
∂ gmn

∂xl . The expression
1
2 (gmn,l + gnl,m − glm,n) is called a Christoffel symbol of the first kind and is often notated

by [ln,m] = γlnm = grm

{
r

l n

}
.

For a little program to calculate the Christoffel symbols,
see (van Hassel, 2010) ,Program to calculate Christoffel symbols.
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Chapter 5 Manifolds
Section 5.1 Differentiable Functions

Let U and V be open subsets of respectively Rn and Rm. Let f be a function from U to
V and a ∈ U.

Definition 5.1.1 The function f is called differentiable in a, if there exists a linear
transformationA ofRn toRm such that for all h in a small enough neighbourhood
of a holds that

f (a + h) = f (a) + Ah+ | h | r(h),

with

lim
|h|→ 0

| r(h) |= 0.

�

Take cartesian coordinates at Rn and Rm. Let f k be the k-th component function of f
and write a =

[
ak

]
. Let A =

[
A j

i

]
be the matrix ofAwith respect to the standard bases

ofRn andRm. Look in particular the component function f i and h = hδ j
iE j, than holds

f i(a + h) = f i(a1, · · · , a j−1, a j + h, · · · , an) = f i(a) + Ai
jh + o(h), h→ 0.

It follows that

Ai
j =

∂ f i

∂x j (a).

The linear transformationA is called the derivative in a and the matrix A is called the
functional matrix. For A, we use also the notation df

dX
(a). If m = n, than can also be

determined the determinant of A. This determinant is just
∂ f 1, · · · , f n

∂x1, · · · , xn (a), the Jacobi

determinant of f in a.
Let K be a curve in U with parameter t ∈ (−α, α), for a certain value of α > 0. So

K : t→ X(t). Let a = X(0). The tangent vector at K in the point a is given by dX
dt

(0). Let
L be the image curve in V of K under f . So L : t→ Y(t) = f (X(t)). Call b = Y(0) = f (a).

The tangent vector at L in the point b is given by dY
dt

(0) =
d f
dX

(a) dX
dt

(0).
If two curves K1 and K2 through a at a have an identical tangent vector than it follows
that the image curves L1 and L2 of respectively K1 and K2 under f have also an identical
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tangent vector.
The three curves K1, K2 and K3 through a have at a tangent vectors, which form an
addition parallelogram. There holds than that the tangent vectors at the image curves
L1, L2 and L3 also form an addition parallelogram.

Section 5.2 Manifolds

Let M be a set2 3.

Definition 5.2.1 A subset U of M is called a chart ball of M if there exists an open
subset Ũ of Rn such that there exists a map φ which maps U bijective on Ũ. The
open subset Ũ of Rn is called chart and the map φ is called chart map. �

Definition 5.2.2 Let φ : U → Ũ and ψ : V → Ṽ be chart maps of M, with
U ∩ V 6= ∅. The maps φ ◦ ψ−1 and ψ ◦ φ−1 are called transition maps. �

Note that transition maps only concern points which occur in more than one chart and
they map open subsets in Rn into open subsets of Rn.

Definition 5.2.3 A collection of chart balls and there corresponding chart maps
{Ui, φi} of M is called an atlas of M if M = ∪i Ui and if every transition map is
differentiable in the points where they are defined. �

Definition 5.2.4 The set M is called a manifold of dimension n if M is provided
with an atlas of which all charts are subsets of Rn. �

Strictly spoken the following has to be added to Definition 5.2.4. M is a topological
Hausdorff space which is locally homeomorf with Rn.

In the remainder there is supposed that M is a manifold. Let U and U′ be chart balls
of M such that U ∩ U′ 6= ∅. Let also Ũ and Ũ′ be the corresponding charts, with the

RRvH: Problem is how to describe that set, for instance, with the help of Euclidean coordinates?2

RRvH: It is difficult to translate Dutch words coined by the author. So I have searched for3

English words, commonly used in English texts, with almost the same meaning. The book of
(Ivancevic and Invancevic, 2007) ,Applied Differential Geometry was very helpful.
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chart maps φ : U→ Ũ and φ′ : U′ → Ũ′. Let Ũ and Ũ′ be provided with the respective
coordinates ui and ui′ and write for x ∈ U ∩ U′,

φ(x) = (u1, · · · ,un) and φ′(x) = (u1′ , · · · ,un′).

There holds that(
φ ◦ (φ′)−1

)
(u1′ , · · · ,un′) = (u1, · · · ,un) and

(
(φ′) ◦ φ−1

)
(u1, · · · ,un) = (u1′ , · · · ,un′),

which we simply write as ui = ui(ui′) and ui′ = ui′(ui). Because of the fact that the
transition maps4 are differentiable, we can introduce transition matrices by

Ai′
i =

∂ui′

∂ui and Ai
i′ =

∂ui

∂ui′ .

Chart maps are bijective and there holds that det[Ai′
i ] 6= 0 and det[Ai

i′] 6= 0. The inter-
section U ∩ U′ of M is apparently parametrised by ( at least) two curvilinear coordinate
systems.

In the remainder U and U′ are chart balls of M with a non-empty intersection U ∩ U′.
The corresponding charts and chart maps we notate respectively with Ũ, Ũ′ and φ, φ′.
The open subsets Ũ, Ũ′ are provided by the coordinates ui and ui′ .

Definition 5.2.5 A curve K at M is a continuous injective map of an open interval
I to M. �

Let K be curve at M such that a part of the curve lies at U ∩ U′. That part is a curve that
appears at the chart Ũ, at the chart Ũ′ and is a curve in Rn. A point X(t0) ∈ U ∩ U′,
for a certain t0 ∈ I, can be found at both charts Ũ and Ũ′. At these charts the tangent
vectors at K in X(t0) are given by

d(φ ◦ X)
dt

(t0) and
d((φ′) ◦ X)

dt
(t0).

Let K1 : t 7→ X(t), t ∈ I1 and K2 : τ 7→ Y(τ), τ ∈ I2 be curves at M, which have a
point P in common in U ∩ U′, say P = X(t0) = Y(τ0), for certain t0 ∈ I1 and τ0 ∈ I2.
Suppose that the tangent vectors on K1 and K2 in P at the chart Ũ coincide. The tangent
vectors on K1 and K2 in P at the chart Ũ′ also coincide, because by changing of chart
these tangent vectors transform with the transition matrix Ai′

i .

Definition 5.2.6 Two curves K1 and K2 at M which both have the point P in
common are called equivalent inP, if the tangent vectors onK1 andK2 inP at a chart
Ũ coincide. From the above it follows that this definition is chart independent. �

RRvH: Transition maps represent in general a nonlinear transformation of coordinates.4
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Definition 5.2.7 Let P ∈ M. A class of equivalent curves in P is called a tangent
vector in P at M. The set of all tangent vectors in P at M is called the tangent space
in P. �

Note that the tangent space is a vector space of dimension n. We notate these tangent
vectors by their description at the charts. A basis of the tangent space is formed by

the tangent vectors ∂

∂ui in P at the parameter curves, which belong to the chart Ũ. The

relationship of the tangent vectors ∂

∂ui′ , which belong to the parameter curves of chart

Ũ′, is given by
∂

∂ui′ = Ai
i′
∂

∂ui .

Definition 5.2.8 A function at M is a map of a part of M to the real numbers. �

At the chart Ũ is a function f described by f φ−1 : Ũ → R. Note that Ũ = φ(U). We
notate also functions by there description at the charts.

Definition 5.2.9 Two functions f and g at M are called equivalent in a point P if
for their descriptions f (ui) and g(ui) at U holds

∂ j f (ui
0) = ∂ jg(ui

0),

whereby φ(P) = (u1
0, · · · ,u

n
0). �

The foregoing definition is chart independent because

ui′ = ui′(ui), ∂ j′ f = A j
j′ ∂ j f .

Definition 5.2.10 A covector in P at the manifold M is a class of in P equivalent
functions. The cotangent space in P is the set of the covectors in P at M. �

The cotangent space is a vector space of dimension n. The covectors dui in P of the
parameter functions ui, which belong to the chart Ũ, form a basis of the cotangent space.
For two charts holds

dui′ = Ai′
i dui.

For a function f and a curve K in a point P of M is f ◦ K a map of the open interval I to
R and there holds
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d
dt

( f ◦ K) =
d
dt

f (ui(t)) = ∂i f
dui

dt
.

This expression, which is chart independent, is called the directional derivative in
P of the function f with respect to the curve K and is conform the definition 3.6.2,
Subsection 3.6.1. In the directional derivative in P we recognize the covectors as lin-
ear functions at the tangent space and the tangent vectors as linear functions at the
cotangent space. The tangent space and the cotangent space in P can therefore be con-
sidered as each other’s dual.
The tangent vectors in a point P at the manifold M, we can also define as follows:

Definition 5.2.11 The tangent vector in P is a linear transformationD of the set
of functions at M, which are defined in P, in R, which satisfies

D(α f + β g) = αD( f ) + βD(g), D( f g) = f D(g) + gD( f ). (5.1)

�

A tangent vector according definition 5.2.7 can be seen as such a linear transformation.
Let K be a curve and define

D f =
d
dt

f ◦ K,

thanD satisfies 5.1, because for constants α and β holds

dui

dt
∂i(α f + β g) = α

dui

dt
∂i f + β

dui

dt
∂ig,

dui

dt
∂i( f g) = f dui

dt
∂ig + g dui

dt
∂i f .

Section 5.3 Riemannian manifolds

Let M be a manifold.

Definition 5.3.1 A tensor field at M is a map which adds to every point of M a
tensor of the corresponding tangent space of that point. �

In every tangent space can be introduced an inner product with which tensoralgebra
can be done. Unlike surfaces in R3 we don’t have in general an a priori given inner
product, that can be used simultaneously to all the tangent spaces. This missing link
between the different tangent spaces of a manifold is completed in the following defin-
ition.
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Definition 5.3.2 A Riemannian manifold is a manifold which is equipped with
a smooth, symmetric and positive definite 2-tensor field. �

Let now be M a Riemannian manifold. To every point P ∈ M and every pair v, w ∈

TP(M) belongs a function γP : (v,w) 7→ γ(P;v,w) such that γP is linear in v and w, is
symmetric in v and w and also satisfies to γ(P;v,v) > 0 if v 6= 0.
Let U be a chart ball of M with the corresponding chart map φ and coordinates {ui

}. Let
vi and wi be the components of respectively v and w with respect to these ui and write

γ(P;v,w) = gi j vi w j,

with gi j = g ji and [gi j] positive definite. In the tangent space TP(M) serves γ as funda-
mental tensor. Therefore we call the 2-tensor field that belongs to M the fundamental
tensor field.

To a given fundamental tensor field can be introduced Christoffel symbols by{
i

j k

}
=

1
2

gil (∂ jgkl + ∂kgl j − ∂lg jk).

We call the curves which satisfy the differential equations

ük +

{
k

i j

}
u̇i u̇ j = 0

geodesics of the Riemannianmanifold. Even as in the chapter before can be proved that
the shortest curves in a Riemannian manifold are geodesics.
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Example(s): 5.3.1 a mechanical system with n degrees of freedom, with gen-
eralised coordinates q1, · · · , qn, of which the kinetic energy is a positive definite
quadratic norm in q̇i, with coefficients which depend on qi,

T =
1
2

ai j(qk) q̇i q̇ j.

The differential equations of the behaviour of the system are the equations of
Lagrange,

d
dt

(
∂T
∂q̇k

)
−
∂T
∂qk = Kk,

where Kk(q j, t) are the generalised outside forces.
The configuration of the system forms a Riemannian manifold of dimension n, T
appears as fundamental tensor. The equations of Lagrange can be written as

q̈k +

{
k

i j

}
q̇i q̇ j = Kk.

When there work no outside forces at the system a geodesic orbit is followed by
the system on the Riemannian manifold.

Notice(s): 5.3.1 According the definition of a Riemannian manifold is every tan-
gent space provided with a positive definite fundamental tensor. With some effort
and some corrections, the results of this paragraph and the paragraphs that fol-
low can be made valid for Riemannian manifolds with an indefinite fundamental
tensor. Herein is every tangent space a Minkowski space. This note is made in
relation to the furtheron given sketch about the general theory of relativity.

Section 5.4 Covariant derivatives

Regard a Riemannian manifold M formed by an open subset of Rn and a curvilinear
coordinate system {ui

} at M as a chart. Let a be a constant vector field on M. While
a is constant with respect to the coordinates ui of the chart, the components ai of a,
with respect to the basis ∂iX of the tangent space, depend on ui, because the basis ∂iX
depends on ui. We differentiate this constant vector field a along a curve K, described
by X(t) = X(ui(t)). Write a = vi(t)∂iX(t) at every point of K. Then holds

0 =
da
dt

=
d
dt

(vi ∂iX) =

(
dvi

dt
+

{
i

j k

}
du j

dt
vk

)
∂iX.
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This gives us the idea to define the covariant derivative of a vector field w = wi∂iX
along a curve K by (

∇

dt
wi

)
∂iX =

(
dwi

dt
+

{
i

j k

}
du j

dt
wk

)
∂iX. (5.2)

Here is a vector field along a curve K. This vector field is independent of the choice of
the coordinates,

dwi′

dt
+

 i′

j′ k′

 du j′

dt
wk′ =

d
dt

(
Ai′

i wi
)

+

Ai′
i A j

j′A
k
k′

 i

j k

 + Ai′
s ∂ j′

(
As

k′
)A j′

p
dup

dt
Ak′

q wq =

Ai′
i

dwi

dt
+

 i

j k

 du j

dt
wk

 + ∂h
(
Ai′

i

) duh

dt
wi + Ai′

s ∂p
(
As

k′
)

Ak′
q

dup

dt
wq.

The last term in the expression above is equal to

−Ai′
s As

k′ ∂p
(
Ak′

q
) dup

dt
wp = −∂p

(
Ai′

q
) dup

dt
wk,

such that
dwi′

dt
+

{
i′

j′ k′
}

du j′

dt
wk′ = Ai′

i

(
dwi

dt
+

{
i

j k

}
du j

dt
wk

)
.

Let M be Riemannian manifold and {U, φ} a chart5, with coordinates ui and Christoffel

symbols
{

k
l m

}
. Let K be a parametrised curve at the chart U and T a

(r
s
)
tensor field,

that at least is defined in every point of K.We want to introduce a differentiation opera-
tor ∇dt along K such that ∇dtT is an on K defined

(r
s
)
tensor field. ∇dt is called the covariant

derivative along K.

We consider first the case r = 1, s = 0. The covariant derivative of a tangent vector field

of M along K we define by Expression 5.2. If ∇
dt

a = 0 delivers, we call a pseudoparallel
along the curve K. Out of the theory of the ordinary differential equations follows
that a tangent vector a0 on M given at the begin of the curve K can be continued to
a pseudoparallel vector field along K. In other words, a0 can be parallel transported
along the curve K.

Notice that the geodesics are exactly those curves, where with the use of the arclength
parametrisation, the tangent vectors are pseudoparallel to the curve. There holds

RRvH: The definition of a chart ball and a chart is not consequently used by the author. Ũ = φ(U) is a5

chart of M, {U, φ} is a chart ball of M. The cause of this confusion is the use of the lecture notes of Prof.
Dr. J.J. Seidel, see (Seidel, 1980) ??.
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∇u̇k

ds
=

du̇k

ds
+

{
k

i j

}
u̇i u̇ j = 0.

We consider now the case r = 0, s = 1, the covariant derivative of a covector field (
of the covariant components of a vector field) along the curve K. Let θr dur be a given
covector field that at least is defined everywhere onK and ar ∂rX a pseudoparallel vector
field along K. Then holds

d
dt

(ar θr) =
dar

dt
θr + ar dθr

dt

= −

 r

j k

 du j

dt
ak θr + ar dθr

dt
+ θr

∇

dt
ar

=

dθk
dt
−

 r

j k

 du j

dt
θr

 ak.

If we want that the Leibniz rule holds, by taking the covariant derivative, then we have
to define

∇

dt
θk =

dθk
dt
−

{
r

j k

}
du j

dt
θr, (5.3)

along K.
There can be directly proved that by the change of a chart holds

∇

dt
θk′ = Ak

k′
∇

dt
θk.

Analogously an arbitrary 2-tensor field φ is treated. Take for instance r = 0, s = 2
and notate the components of φ by φi j. Take two arbitrary pseudoparallel vector fields
a = ai ∂iX and b = b j ∂ jX, along K and require that the Leibniz rule holds then

d
dt

(
φi j ai b j

)
=

dai

dt
φi j b j +

db j

dt
φi j ai + ai b j dφ

dt

=

dφkl
dt
−

 j

m k

 dum

dt
φ jl −

 i

m l

 dum

dt
φki

 ak bl.

So we have to define
∇

dt
φkl =

dφkl
dt
−

{
m

j k

}
du j

dt
φml −

{
n

j l

}
du j

dt
φkn. (5.4)

By change of a chart it turns out again that
∇

dt
φk′l′ = Ak

k′ A
l
l′
∇

dt
φkl.

Simili modo the case that r = 1, s = 1 is tackled by the contraction of a pseudoparallel
vector field and a ditto covector field. This delivers
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∇

dt
φk

l =
d
dt
φk

l +

{
k

j p

}
du j

dt
φ

p
l −

{
r

j l

}
du j

dt
φk

r . (5.5)

To higher order tensors it goes the same way. Taking the covariant derivative along
a parametrised curve means, take first the ’normal’ derivative and then add for every
index a Christoffel symbol.

For the curve K we choose a special curve, namely the h-th parameter curve. So u j =

K j + δ jh t, with K j constants. So there holds t = uh
− Kh. With ∇

dt
=
∇

duh = ∇h we
find that

∇hwi = ∂hwi +

 i

h k

wk,

∇hθk = ∂hθk −

 r

h k

θr,

∇hφkl = ∂hφkl −

 r

h k

φrl −

 s

h l

φks,

∇hφ
jk
i = ∂hφ

jk
i −

 m

h i

φ jk
m +

 j

h m

φmk
i +

 k

h m

φ jm
i ,

∇hgi j = 0, etc., etc..

If there is changed of a chart, the next case behaves (check!) as

∇h′φ
j′k′
i′ = Ah

h′ A
i
i′ A

j′
j Ak′

k ∇hφ
jk
i .

The covariant derivative along all parameter curves converts a
(r
s
)
-tensor vector field

into a
( r
s + 1

)
-tensor on M. Most of the time the covariant derivative is interpreted as the

latter.

Section 5.5 The curvature tensor

If a function f of two variables x and y is smooth enough, there holds that

∂2 f
∂x ∂y

−
∂2 f
∂y ∂x

= 0.

However, the second covariant derivative of a vector field is not symmetric. There holds
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∇h∇ivk = ∂h
(
∇ivk

)
−

 m

h i

∇mvk +

 k

h m

∇ivm

= ∂h∂ivk +

 k

i j

∂hv j + v j ∂h

 k

i j

 −
 m

h i

∇mvk +

 k

h m

∂ivm +

 k

h m


 m

i j

v j.

Reverse the rule of h and i and out of the difference with the latter follows

∇h∇ivk
− ∇i∇hvk =

(
∂h

{
k

i j

}
− ∂i

{
k

h j

}
+

{
k

h m

}{
m

i j

}
−

{
k

i m

}{
m

h j

})
v j.

The left hand side is the difference of two
(1
2
)
-tensor fields and so the result is a

(1
2
)
-tensor

field. Because of the fact that v j are the components of a vector field, the expression
between the brackets in the right hand side, are components of a

(1
3
)
-tensor field.

Definition 5.5.1 The curvature tensor of Riemann-Christoffel is a
(1
3
)
-tensor field

of which the components are given by

Kk
hi j = ∂h

{
k

i j

}
− ∂i

{
k

h j

}
+

{
k

h m

}{
m

i j

}
−

{
k

i m

}{
m

h j

}
. (5.6)

�

The following relations hold

(∇h∇i − ∇i∇h) vk = Kk
hi j v j,

(∇h∇i − ∇i∇h) w j = Kk
hi j wk,

(∇h∇i − ∇i∇h) φk
j = Kk

him φ
m
j − Km

hij φ
k
m.

On analogous way one can deduce such kind of relations for other type of tensor fields.

With some tenacity the tensorial character of the curvature tensor of Riemann-
Christoffel, defined in 5.6, can be verified. This can be done only with the use of the
transformation rule: {

i′
j′ k′

}
= Ai′

i A j
j′ A

k
k′

{
i

j k

}
+ Ai′

i ∂ j′ Ai
k′ ,

see section 3.6.3, formula 3.8.

Notice(s): 5.5.1 Note that:

Kk
hi j = −Kk

ihj.
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In the case that
{

k
i j

}
=

{
k

j i

}
then

Kk
hi j + Kk

jhi + Kk
i jh = 0.

In the case, see formula 3.9,{
k

i j

}
=

{
k

j i

}
= gkm [i j; m] with [i j; m] =

1
2
(
∂ig jm + ∂ jgim − ∂mgi j

)
,

we find for the covariant components of K

Khijk = gkl Kl
hi j

= ∂h∂ jgik + ∂i∂kghj − ∂h∂kgi j − ∂i∂ jghk +

+ gml ([ik; m][hj; l] − [i j; l][hk; m]
)
.

It requires a lot of perseverance to verify this formula! We note some symmetries

Khijk = Kihjk = Khik j = Kihk j and Khijk + K jhik + Ki jhk = 0.

Out of this follows that Kii jk = Khimm = 0. In 2 dimensions the curvature tensor seems
to be given by just one number. In that case only the following components can be not
equal to zero

K1212 = −K1221 = K2112 = −K2121 = h11 h22 − h12 h21 = det[gik]det[hk
i ].

The last identity can be easily proved by choosing just one smart chart. The "tangent
plane coordinates" for instance, such as is done in the proof of Theorem 4.2.1.

Through contraction over the components h and k of the Riemann-Christoffeltensor
there arises a

(0
2
)
-tensor field of which the components are given by

Ki j = Kk
ki j = ∂k

{
k

i j

}
− ∂i

{
k

k j

}
+

{
k

k m

}{
m

i j

}
−

{
k

i m

}{
m

k j

}
.

We study this tensor field on symmetry. The first term keeps unchanged if i and j are
changed. The combination of the 3th and 4th term also. Only the 2th term needs some
further inspection. With {

k
k j

}
= gkm [kj; m] =

1
2

gkm ∂ jgkm

we find that

∂i

{
k

k j

}
=

1
2
(
∂igkm

)
∂ jgkm +

1
2

gkm ∂i∂ jgkm.

The 2th term in the right hand side turns out to be symmetric in i and j. For the 1th
term we write with the help of ∂igkm = − gkr glm ∂igrl the expression
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1
2
(
∂igkm

)
∂ jgkm = − gkr glm (

∂igrl
) (
∂ jgkm

)
.

Also this one is symmetric in i and j.
Out of this, there can be derived a constant, given by

K = Khi ghi.

With the help of this scalar is formed the Einstein tensor field

Ghi = Khi −
1
2

K ghi.

This tensor field depends only of the components of the fundamental tensor field and
plays an important rule in the general relatively theory. It satisfies also the following
properties

Ghi = Gih and ∇iGhi = 0.
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Chapter 6 Appendices
Section 6.1 The General Tensor Concept
On the often heard question: "What is a tensor now really?" is a sufficient answer, vague
and also sufficient general, the following: "A tensor is a function T of a number of
vector variables which are linear in each of these variables separately. Furthermore
this function has not to be necessary real-valued, she may take values in another vector
space."

Notation(s): Given

• k Vector spaces E1, E2, · · · , Ek.
• A vector space F.

Then we note with

Lk(E1, E2, · · · , Ek; F)

the set of all multilinear functions

t : E1 × E2 × · · · × Ek → F

(u1, u2, · · · , uk) 7→ t(u1, u2, · · · , uk) ∈ F.

Comment(s): 6.1.1

a. Multilinear means that for every inlet, for instance the j-th one, holds that

t(u1, · · · , αu j + βv j, · · · , uk) = α t(u1, · · · , u j, · · · , uk) + β t(u1, · · · , v j, · · · , uk),

for all u j ∈ E j, for all v j ∈ E j and for all α, β ∈ R.
b. The vector spaces E j, 1 ≤ j ≤ k, can all be different and the dimensions can

be different.
c. Of Lk(E1, E2, · · · , Ek; F) can bemade a vector space by introducing an addition

and and a scalar multiplication as follows

(α t + β τ)(u1, · · · , uk) = α t(u1, · · · , uk) + β τ(u1, · · · , uk).

Herein are t, τ ∈ Lk(E1, E2, · · · , Ek; F) and α, β ∈ R.

Exercise. If dimE j = n j and dimF = m, calculate then the dimLk(E1, E2, · · · , Ek; F).
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Notation(s):

• L1(E; F) = L(E; F) notates the vector space of all linear transformations of E
to F.

• L(E; R) = E∗, the dual vector space of E, the vector space of all linear functions
on E.

• If dimE < ∞ then L(E∗; R) = E∗∗ = E.

Exercise. Let see that Lk(E1, · · · , Ek; F), with dimF < ∞, is basically the same as
Lk(E1, · · · , Ek, F∗; R).

Theorem 6.1.1 There is a natural isomorphism

L(Ek,Lk−1(E1, · · · , Ek−1; F)) ' Lk(E1, · · · , Ek; F)

�

Proof Take φ ∈ L(Ek,Lk−1(E1, · · · , Ek−1; F)) and define
∼
φ ∈ Lk(E1, · · · , Ek; F) by

∼
φ = (φ(uk))(u1, · · · , uk−1). The addition φ 7→

∼
φ is a isomorphism, i.e. a bijective map.

( You put in
∼
φ a "fixed" vector uk ∈ Ek at the k-th position and you hold on amultilinear

function with (k − 1) inlets.) �

Notation(s): If we take for E1, · · · , Ek respectively r copies of E∗ and s copies of
E, with r + s = k, and also suppose that F = R, then we write Tr

s(E) in stead of

Lr + s(

r pieces︷ ︸︸ ︷
E∗, · · · , E∗,

s pieces︷ ︸︸ ︷
E, · · · , E; R). The elements of this vector space Tr

s(E) are called
(mixed) (r + s)-tensors on E, they are called contravariant of the order r and co-
variant of the order s.

Definition 6.1.1 (Tensorproduct)
Given: t1 ∈ Tr1

s1 (E), t2 ∈ Tr2
s2 (E).

Then is the tensorproduct t1 ⊗ t2 ∈ Tr1 + r2
s1 + s2

(E) defined by

(t1 ⊗ t2)(
∧p

1
, · · · ,

∧p
r1
,
∧q

1
, · · · ,

∧q
r2
, x1, · · · , xs1

, y
1
, · · · , y

s2
) =

t1(
∧p

1
, · · · ,

∧p
r1
, x1, · · · , xs1

) · t2(
∧q

1
, · · · ,

∧q
r2
, y

1
, · · · , y

s2
),

with
∧p

j
,
∧q

j
∈ E∗ and x j, y

j
∈ E arbitrary chosen. �
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Comment(s): 6.1.2

a. The product-operation ⊗ is not-commutative, associative and bilinear.
b. Because of the previously mentioned identifications we have

T1
0(E) ' ET0

1(E) ' E∗,

T2
0(E) ' L(E; E∗)T1

1(E) ' L(E; E).

Theorem 6.1.2 If dim(E) = n then has Tr
s(E) the structure of a nr + s-dimensional

real vector space. The system

{ei1 ⊗ eir ⊗
∧e

j1
⊗
∧q

js
| 1 ≤ ik ≤ n, 1 ≤ ik ≤ n},

associated with a basis { e j} E, forms a basis of Tr
s(E). �

Proof We must show that the previously mentioned system is linear independent in
Tr

s(E) and also spans Tr
s(E).

Suppose that

αi1···ir
j1··· js

ei1 ⊗ eir ⊗
∧e

j1
⊗
∧q

js
= 0

fill all systems (
∧e

k1
⊗
∧e

kr
⊗ el1 ⊗ els), with 1 ≤ k j ≤ n, 1 ≤ ls ≤ n, in the mentioned

(r + s)-tensor then follows with <
∧e

p
,
∧eq >= δ

p
q that all numbers αi1···ir

j1··· js
have to be equal

to zero. Finally, what concerns the span, every tensor t ∈ Tr
s(E) can be written as

t = t( ∧e
i1
· · ·
∧e

ir
, e j1 , · · · , e js) ei1 ⊗ eir ⊗

∧e
j1
⊗
∧e

js
.

�

Comment(s): 6.1.3 The numbers ti1···ir
j1··· js

= t(∧e
i1
· · · ,

∧e
ir
· · · e j1 ⊗ e js) are called the

components of the tensor t with respect to the basis e j}. Apparently these numbers
are unambiguously.

Example(s): 6.1.1 The Kronecker-delta is the tensor δ ∈ T1
1(E) which belongs to

the identical transformation I ∈ L(E; E) under the canonical isomorphism
T1

1(E) ' L(E; E). I.e. ∀x ∈ E∀ ∧p ∈ E∗ δ(∧p, x) = (∧p, x).
The components are δi

j with respect to every base.
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Example(s): 6.1.2 The inner product on E can be interpreted as a map
i(x) : T1

1(E) → T1
0(E) in (i(x) t)( ∧p) = t( ∧p, x) .

Finally we discuss how linear transformations of a vector space E to a vector space F
can be "expanded" to linear transformations between the vector spaces Tr

s(E) and Tr
s(F).

If P ∈ L(E; F) then also, pure notational, P ∈ L(T1
0(E), T1

0(F)). The "pull-back transfor-
mation" or simple "pull-back" P∗ ∈ L(F∗, E∗) = L(T0

1(E); T0
1(F)) is defined by

< P∗(
∧

f), x >=<
∧

f , Px >

with
∧

f ∈ F∗ and x ∈ E.
Sometimes it is "unhandy" that P∗ develops in the wrong direction, but this can be
repaired if P is an isomorphism, so if P−1 : F→ E, exists.

Definition 6.1.2 Let P : E → F be an isomorphism. Then is Pr
s : Tr

s(E) → Tr
s(F)

defined by

Pr
s(t)(

∧q 1, · · · ,
∧q r, y1, · · · ,ys) = t( P∗

∧q 1, · · · , P∗
∧q r, P−1y1, · · · ,P

−1ys)

�

Comment(s): 6.1.4 P1
0 = (P−1)∗ is a "push-forward", so it works the same direc-

tions as P.

The following theorem says that "lifting up the isomorphism P to tensor spaces" has all
the desired properties, you expect. Chic expressed: The addition P → Ps

r is a covariant
functor.
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Theorem 6.1.3 Given are the isomorphisms P : E→ F, Q : F→ G,
then holds

i. (P ◦ Q)r
s = Pr

s ◦ Qr
s.

ii. If J : E → E is the identical transformation then is Js
r : Ts

r(E) → Ts
r(E) also the

identical transformation.
iii. Pr

s : Ts
r(E)→ Ts

r(E) is an isomorphism and (Pr
s)−1 = (P−1)r

s.
�

Proof The proof is straightforward. �

At the end, for the index-fetishists6.

Theorem 6.1.4 Given

• Vector space E with base {ei}.
• Vector space F with base {f j}.
• Isomorphism P : E→ F.

Notate P ei = P j
ib j and (P−1)∗

∧e
k

= Qk
l

∧

f
l
. Then holds

• P j
iQ

i
k = Q j

iP
i
k = δ

j
k.

• For t ∈ Ts
r(E) with components ti1···ir

j1··· js
with respect to {e i} holds:

The components of Pr
st ∈ Tr

s(F), with respect to {f j} are given by

(Pr
st)

k1···kr
l1···ls

= Pk1
i1
· · · · · Pkr

ir
·Qi1

l1
· · · · ·Q js

ls
· ti1···ir

j1··· js
.

�

Proof �

Comment(s): 6.1.5 Also holds P−1 f j = Qk
j e k.

Section 6.2 The Stokes Equations in (Orthogonal)
Curvilinear Coordinates

6.2.1 Introduction
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The Stokes equations play an important rule in the theory of the incompressible viscous
Newtonian fluid mechanics. The Stokes equations can be written as one vector-valued
second order partial differential equation,

grad p = η4u, (6.1)

with p the pressure, U the velocity field and η the dynamic viscosity. The Stokes equa-
tions express the freedom of divergence of the stress tensor. This stress tensor, say S, is
a
(2
0
)
-tensor field, which can be written as

S = −p I + η
(
∇u + (∇u)T

)
. (6.2)

The herein occuring
(2
0
)
-tensor field∇u ( yet not to confuse with the covariant derivative

of u) is called the velocity gradient field. But, what exactly is the gradient of a velocity
field, and evenso, what is the divergence of a

(2
0
)
-tensor field? This differentiation op-

erations are quite often not properly handled in the literature. In this appendix we put
on the finishing touches.

6.2.2 The Stress Tensor and the Stokes equations in
Cartesian Coordinates

We consider 6.1 and 6.2 on a domain Ω ⊂ Rn. Let {Xi
} be the Cartesian coordinates on

Ω.

6.2.3 The Stress Tensor and the Stokes equations in
Arbitrary Coordinates

6.2.4 The Extended Divergence and Gradient in Or-
thogonal Curvilinear Coordinates

6.2.4.1 The Extended Gradient

6.2.4.2 The Extended Divergence
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Section 6.3 The theory of special relativity according
Einstein and Minovski

Aap-C

Section 6.4 Brief sketch about the general theory of
special relativity

Aap-D

Section 6.5 Lattices and Reciproke Bases. Piezoelec-
tricity.

Aap-E

Section 6.6 Some tensors out of the continuum me-
chanics.

Aap-F

Section 6.7 Thermodynamics and Differential Forms.
Aap-G
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s
)
-tensor 42(r

s
)
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s
)
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Sk 55
SO(n) 25
SO(p, q) 25
∇

dt 143
Tr

s(V) 43
TX(Rn) 79
û ⊗ v̂ ⊗ ŵ 38
x ⊗ y 32
x ⊗ ŷ 35
x ⊗ y ⊗ ĉ ⊗ d̂ 40

a
affine coordinates 79, 84
antisymmetrizing transformation 60
arc 110
arclength 110, 111
atlas 137

axial vector 54

b
bilinear function 28, 32, 35
binormal 112

c
canonical isomorphism 73
Cartesian coordinates 79
chart 137
chart ball 137
chart map 78, 137
Christoffel symbol of the first kind 135
Christoffel symbols 92
Christoffel symbols of the second kind

134
contraction 43
contravariant 1-tensor 13, 48
contravariant 2-tensor 49
contravariant components 5, 7, 27, 34
contravariant q-tensor 50
contravariant vector field 81
coordinates, helicoidal 109
coordinate system 78
cotangent Space 80
cotangent space (manifold) 139
covariant 1-tensor 13, 48
covariant 1-tensors 9
covariant 2-tensor 49
covariant components 9, 11, 21, 28, 30,

38
covariant derivative 127, 129
covariant derivative (covector field) 95
covariant derivative (vector field) 95
covariant p-tensor 50
covariant vector field 81
covector field 81
covector (manifold) 139
covectors 9
curl 105
curvature 113
curvature tensor, Riemann-Christoffel
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146
curvature vector 113
curve 138
curvilinear 78

d
d’Alembertian 104
density 87
derivative (of f ) 136
differentiable (in a) 136
differential form of degree k 82
directional derivative 90
directional derivative (manifold) 140
direct orthogonal 115
divergence 95, 106
dual basis 10
Dual Space 9

e
Einstein tensor field 148
equivalent function (manifold) 139
equivalent (of curves in point) 138
esic line 124
Euclidean inner product 17
exterior derivative 98

f
first fundamental tensor field 119
formules of Frenet 114
Frenet frame 114
Frenet trihedron 114
functional matrix 136
function (manifold) 139
functor 152
fundamental tensor 29
fundamental tensor field 85

g
geodesic 124
geodesic curvature 123
gradient 105
gradient field 90
Gram matrix 18

h
helix, circular 110, 118

helix, cylindrical 117
Hodge transformation 69
holors 46

i
inequality of Cauchy-Schwarz 19
inner product, antisymmetric 17
inner product, symmetric 17
invariant volume 87

j
Jacobi determinant 136

k
Kronecker delta 12
Kronecker tensor 12, 52
Kronecker Tensor Field 85

l
Lagrange (equations of) 142
Laplace operator 96
Laplace operator (Rn) 104
Laplace operator (scalar field) 107
Laplace operator (vector field) 107
Lie product 91
linear function 8
Lorentz group 25
Lorentz inner product 17
Lorentz transformation 25

m
manifold 137
Meusnier, theorem of 124
Minkowski inner product 71
Minkowski Space 25
mixed 2-tensor 50
mixed components 37, 40
mixed (r

s)-tensor 51
moving frame 114

n
natural equations 115
natural isomorphism 73
non-degenerate 73
normal 112



160

normal plane 112

o
oriented volume 65, 86
orthogonal curvilinear 86
orthogonal group 25
orthonormal basis 24
osculation plane 111

p
parameter representation 110
parameter transformation 110
parametric curve 118
parametric representation 118
parametrisation, orthogonal 120
parametrization 78
perm 58
permanent 58
permutation 55
permutation, even 55
permutation, odd 55
polar coordinates 79
principal curvature 124
principal normal 112
producttensor 44
pseudoparallel (along K) 143

r
radius of curvature 114
real number 27
reciproke basis 20
rectifying plane 112
Representation Theorem of Riesz 19
Riemannian manifold 141

rule of Leibniz 127

s
scalar 27
scalar field 81
scale factors 86
signature 24
Signature inner product 24
space curve 110
standard basis Rn 5
standard basis Rn 9
surface 118
symmetric linear transformation 15
symmetrizing transformation 60

t
tangent bundle 79
tangent line 111
tangent plane 119
Tangent Space 79
tangent space (manifold) 139
tangent vector field 126
tangent vector (manifold) 139, 140
tensor, antisymmetric 55
tensor field (manifold) 140
tensorial 51
tensorproduct 44
tensor, symmetric 55
torsion 113
transformation group 25
transition maps 137

v
vector field 81
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