TECHNISCHE HOGESCHOOL EINDHOVEN
Afdeling Algemene Wetenschappen

Onderafdeling der Wiskunde

CO-OPERATING

SEQUENTIAL PROCESSES

Prof. Dr. E.W. Dijkstra

Jaren 70

EWD! 23

Tabkle of Contents.

Table of Contents.
Preface.
Q. Introduction
1. On the Nature of Sequential Processes,
2. Loosely Connected Processes.
2.1. A Simple Example.
2.2, The Generalized Mutual Exclusion Problem,
2.3. A Linguistic Interlude.
3. The Mutual Exclusion Problem Revisited.
%.1. The Need for a More HRealistic Solution.
3.2. The Synchronizing Primitives.
%.3%. The Synchronizing Primitives Applied to the
Mutual Exclusion Problem.
4.The General Semaphore.
4.1. Typical Uses of the Germeral Semaphore.
4.2. The Superfluity of the General Semaphare.
4.3, The Bounded Buffer.
5. Cooperation via Status Variables.
5.1, An E£xample of a Priority Rule.
5.2. An Example of Conversations
5.2.1. Improvements of the Previous Program,
5.2.2. Proving the Correctness.
6. The Problem of the Deadly Embrace.
6.1. The Banker's Algorithm.
6.2. The Banker's Algorithm Applied

7. Coneluding Remarks.

10
11
19
22
26
26
28

30
31
31
35
39
40
41
48
61
68

5
Kili
82

EwDi23

Freface.

The main purpose of this preface is to 2xplain the specification
"Preliminar Yersion"™, appearing or the title page of these lecture notes.
They have been prepaered under ccnsiderable time pressure, circumstances
under which I was unable to have my use of the English language corrected
by & native, circumstances under which I was unable first to try out
different methods of presentation. As they stand, I hope that they will
serve their two primary purposes: to give my students a guide as to what
I am telling and to give my Friends and Relations an idea of what I am
doing.

The future fate of this manuscript, that may prove to be a monograph
in statu nascendi, will grestly depend an their reactions to it. I am greatly
indebted, in advance, to any reader who is so xind as to take the trouble
to give his comments, either in the form of suggestions how the presentation
or the material itself could be improved, or in the form of an appreciation.
From the latter comments I will try to get an idea whether it is worth-while
to pursue this effort any further ard to prepare a publication fit for and
agreesble to a wider public.

Already at this stage I should like to express my gratitude to many:
to my zallaborators C.Branm {(in particular for his scrutinous screening of
the typed version), to A.N.Habermann, F.J.A.Hendriks, C.Ligtmans and P.A.
Voorhoeve for many stimulating amd clarifying discussions on the subject
itself, to the Department of Mathematics af the Technological University,
Eindhoven, for the opporturity to spend my time orn the problems dealt with
and to lecture on their solutions and also —trivial as it may seem, this
is nevertheless vital!- for putting at my private dispasal a typs writer
with a character set in complete accordance with my personal wishes.

E.W.Dijkstra

Department of Mathematics
Technological University
P.0. Box 513

E INDHOVEN

The Netherlands

EwD123 = ©

O, Introductien.

These lectures are intended for all those that expect that in their
future activities they will become seriously involved in the problems that
arise in either the design or the more advancad applications of digital
information processing equipment; they are further intended for all thase

that are just interested.

The applications I have in mind ars those in which the activity cof a
computer must include the proper reacting to a pessibly great varlety of
messages that can be sent to it at unmprediectable moments, a situation which
Jccurs in process control, traffic control, stock cantrol, barnking applica-
tions, automization of information flaw in large ocrganizations, centralized
computer service and, finmally, all information systems in which a number of

computers are coupled o esch other.

The desire to apply computers in the ways sketched above has often a
strong economic motivation, but in these lectures the not unimportant ques—
tion of efficiency will not be stressed tooc much. We shall occupy ourselves
much more with the leogical problems which arise, for example, when speed
ratios are unknown, communiczetion possibilities restricted etc. We intend
to do so in order to create a clearer insight intec the origin of the diffi-
culties we shall meet and inta the nmature of our splutions. To decide
whether under given circumstances the application of our techniques is

aconomically attractive or not fells outside the scope of these lectures.

I regret that I cannot offer a fully worked out theory, complete with
Greek letter formulae, so to speak. The only thing [can do under the present
circumstances is to offer a variety of problems, together with solutians.

And in discussing these, we can only hope to bring as much system into it
as we possibly can, to find which concepts are relevant, as we go along.
May everyone that follows me along this road enjoy the fascination of these

intriguing problems as much as I do!

EwD12% - A

1. On the Nature of Sequential Processes.

Our problem field proper is the coaperation betweern two or more sequential
processes. Before we can enter this field, however, we Fave #a kinow quits
clearly what we call "a sequential process". To this preliminary question

the present section is devoted.

I should like to start my elucidation with the comparizon of two machines
ta do the same example job, the one a ron-seguential maching, the other a

sequential one.

Let us assume that of each of four quantities, named “3{1]", “3[2]",
"5[3]" and "8[4]" respectively, the value is given. Our machine has to process
these values in such a way that, as its reaction, it "tellg" us, which of the

four guantities has the largest value. E.g. in the case:
"8[1] =7, '3[2] =12, 3[3] =2, 8[4] = gn

the answer to be produced is "5[2]" {or only "2", giving the index value

pointing to the maximum element).

Note that the desired answer would become incompletely defined if the
set of values were —in order— "7, 12, 2, 124, for then there is no unigue
largest element and the answer “aEZJ" would have been as good (or as bad)
as "8[4]". This is remedied by the further assumption, that af the four

values given, no two are equal.

Remark 1. If the required arswer would have been the maximum value
occuring ampng the given anes, then the last restriction would have been
superfluous, for then the answer corresponding ta the value set "7, 12, 2, 12

would have been "iZ2%,

Remark 2. Our restriction "Of the four values no two are equal” is
still somswhat loosely formulated, for what do we mean by "equal"? In the
processes to be constructed pairs of values will be compared with one another
and what is really meant is, that every two values will be sufficiently
different, so that the comparator will unambiguously decide, which of the
two is the largest one. In nther words, the difference between any twa must

be large compared with "the resolving power" of our comparatars.

EwD12% - 2

We shall first construct cur non-sequential machine., When we assume
our given values to be represented by currents, we can imagine a comparator
consistinrg of a two-wey switch, the position of which is schematically
controlled by the currents in the coils of electromagneis as in Fig.1 and

Fig.z2.

Fig.l. x <<y Fig.2. y <x

When current y is larger than current x, the left electromagnet pulls
harder than the right one and the switch switches to the left (Fig.1) anc
the input A is connected to output B; if current x is the larger one, we

shall get the situation (Fig.2) where the input A iz connected ta output C.

In our diasgrams we shall omit the coils and shall represent such a

comparator by a small box

A
a C

only representing at the itop side the input and ét the bottom side the twno
outputs. The currents tc be lead through the cails are identifisd in the

question written inside the box and the convention is, that the input will
be connected to the right hand side output when the answer to the guestion

is "Yes", to the left hand side output whern the answer is "Na".
1
la[1] < 4[2] 7]
- =
lalt]<al3] 7] [sl2]<a[3] 7]
e
Qu<a{4jl 7| [a[gj<a[4]l 2| [alsl<ala] 2]

[T S T

+
Fig.3.

EwD123 - 3

Now we can construct cur machine as indicated in Fig.3. At the output
side we have drawn four indicstor lamps, one of which will light up to

indicate the answer.

In Fig.4 we indicate the position of the switches when the wvalue set
"7, 12, 2, 9" is applied to it. In the boxes the positions of the switches

are indicated, wires not connected to the input are drawn blotted.

Fig.4.

We draw the readers attention to the fact that now only the positions
of the three switches that cannect output 2 to the input, matter; the reader
is invited to convince himself that the position of the other three switches

is indeed immzterial.

It is also good to give & moment attention to see what happens in time
when our machine of Fig.? is fed with four “value currents". Obvicusly it
cannot be expected to give the correct answer before the four value currents
are going through the coils. But one camnot even expect it %o indicate the
correct answer ss soon as the currents are applied, for the switches must
get inrtoc their correct position and this may take some time. In cther words:
as soon as the currents are applied (simultanenusly or the one after the
other) we must wait a pericd of time +~characteristic for the machine- and
after that the correct answer will be shown at the output side. What happens
in this waiting time is immaterisl, provided that it is long enough fer all
the switches to find their final position, They may start switching simulta-
necusly, the exsct order in which they attaim their final position is

immaterial and, therefore, we shall mot pay any attention to it any more,

From the logical point of view the switching time can be regarded as
& merker an the time axis: before it the input data have to be supplied,

after it the answer is available.

EwD123 - 4

In the use of our machine the progress of time is only reflected in
the obvious "before ~ after" relation, which tells us, that we cannot expect
an answer before the gquestios has been properly put. This sequence relation
is so obvious (and fundamental) that it cannat be regarded as a characteristic
property of our machine. And our machine is therefore called a "non—sequential
machine" to distinguish it from the kind of equipment ~or pracesses that can

be performed by it~ to be described now.

Up till now we have interpreted the diagram of Fig.3 as the (schematic)
picture of a machine to be built in space. Put we can interpret this same
diagram ir a very different manner if we place ourselves in the mind of the
electron entering at the top input ard wondering where to go. First it
finds itself faced with the question whether "a[1] < a[2]" holds. Maving
found the answer to this gquestion, it camn proceed. Depending on the previous
answer it will enter one of the two boxes “a[1} <Ca£3]" or "a[2]‘< a[}]“,
i.e. it will only know what to investigate next, after the first question
has been answered. Hav£:§ found the answer to the question selected from
the second line, it will know which gquestion to ask from the third line and
having found this last answer it will now know which bulb should start to
glow. Instead of regarding the diagram of Fig.3 as that of a machine, the
parts of which are spread out in space, we have regarded it as rules of

behaviour, to be followed in time.

With respect to our earlier interpretation two differences are highly
sigrnificant. In the first interpretation all six comparators started waorking
simultaneously, although finally only three switch positions matter. In the
second interpretstion enly three comparisons are actually evaluated —the
wandering electron asks itself three guestions— but the price of this gain
is that they have to be perfarmed the one after the other, as the outcome
of the previous aone decides what to ask next. In the second interpretation
three questions have to be asked im sequence, the one after the other, The
existence of such an order relatien is the distinctive feature of the second
interpretation which in contrast to the first one is therefore called "a

sequential process". We should like to make two remarks.,

Remark 3. In actual fact, the three comparisons will each take a
finite amount of time (switching time", "decision time" ar, to use the

jargon, "execution time") and as a result the total time taken will at least

£4D12% = 5

be equel to the sum of these three execution times, We stress once mare,
that for many investigations these executions can be regarded as ordered
mark=2rs on a scaleless time axis and that it is anly the relstive ordering

that matters from this (logical) point of view.

Remark 4. As a small side line we note that the two interpretations
{call them "simultaneous comparisons” and Ysegquential comparisons"} are only
extremes, There is a8 way of, again, only pesrforming thres comparisons,
in which two of them can be done independently from one another, i.e. simul-
taneously; the third one, however, can only be done, after the other two

have been campleted. It can be represented with the aid of & box in which

two guestions are put and which, as a result, hss four possible exits, as

Cll<aziz . d3i<aa)?]
i NY WI A
a[1}<a{3] ?l a[1]<a[4] 7 3[2]<a[3] ﬂ 3[2}<aj.4] 7

T‘f J I

in Fig.5.

Fig.5.

The total time taken will be at least the sum &f the comparison execution
times. The process is of the fTirst kind in the sense that the first two
comparisons can be performed simultanecusly, it is of sequenfial rnature

as the third compariscn can only be selected from the second line when the

first twa have both been completed.

We return to our purely sequential interpretation., Knowing that the
diagram is meant for purely sequential interpretation we can take advantage
of this circumstance make the descriptign of the "rules of behaviour" more
compact. The idea is, that the two guestions on the second line =only cne
of which will be actually asked— are highly similar: the guestions one the
same line only differ in the subscript value of the left operand of the
comparison, And we may ask ourselves: "Can we map the gquestions on the same

line of Fig.3 on a single gquestion 7"

This can be done, but it implies that the part that varies along a

line =i.e. the subscript value in the left operand— must be regarded as a

Ewl12% = 6

paramegter, tre task of which is to determime whizh of the gquestions mapped
on each other is meant, when its turn to be executsd has come. Cbviously the

value of this parameter must be definmed by the past history aof the process.

Such parameters, in which past histary can be condensed for future use
are called "variables". To indicate that z new value has toc be assigned to
it we use the so-called assignment operator ":=" {read: "becomes"), a kind
of directed eguality sign which defines the value of the left hand side in

terms of the value of the right hand side.

We hope that the previcus paragraph is sufficient for the reader to
recognize also in the diagrsm of Fig.6 a set of "rulss of behaviour". Our
variahle is called "i"; if the reader wonders, why the first question, which
is invariably "a[?] <Ia[2] ?" is not written that way, he is kindly requested

to have some patience.

Fig.6

when we have followed the rules of Fig.6 as intended from top till

bottom, the final value of i will identify the maximum value, viz. a[iJ.

The transition from the scheme of Fig.3 to the one of Fig.6 is a drastic
change, for the last "rules of behaviour” can only be interpreted sequentially.
And this is due to the introduction of the variable "iM: having only a[1],
5[2], 3{3] and 3[4] available as values to be compared, the question
"a[i] <:aE2] 7" is meaningless, unless it is known for which value of "i"

this comparison has to be made.

EwD12% ~ 77

Remark 5. It is saomewhat cnbhappy that the jargon of the trade calls
the thing denoted by "i", a variable, because in normal mathematics, the
corncept of a variable is a completely timeless concept. Time has nothing

to do with the "x" in the reistion

"sin(2 * x) = 2 % gin(x) * cos{x)";

if such a varishle ever denctes a wvalue, it denotes "any value".

Fach time, however, that a variable in 2 sequential process is used
—~such as "i" in "a[i]"- it denotess a very specific value, viz. the last
value assigned to it, and nothing else! As long as no new value is assigned

to a varizble, it derotss a constart valus!

I am, however, cnly too hesitart ta coin new terms: firstly it would
make this monograph unintendedly pretentious, secondly I feel that the
(fashicnable!) coining of new terms often adds as much to the confusion in
one way as it removes in the other. I shall thersfore stick to the term

"yariable®.

Remark 6. Orne may well ask, what we are actually doing, when we
introduce a variahle without specifyirg, for instance, = domain for it,
i.2. a set of values which is guaranteed to comprise all its future actual

values. We shall not pursue this any further here.

Now we are going to subject cur scheme to a next transformation. Ir
Fig.% we have "wrapped up" the lines, now we are going to wrap up the scheme
of Fig.6 im the-other direction, an operation to wich we ere invited by the
repetitive nature of it and which can be performed at the price of a next

variable, "j" say.

(i) <ei] 7

i:= J

Fig.7

EwWwD123 - 8

The charge is a dramatic one, for the fact that the original problem
was tec idertify the maximum value among four given values is ro longer
reflected in the "topology"™ of the rules of hehavigur: in Fig.7 we only
find the number "4" menmtioned ance. By intrcducing another variable, say
"n", and replacing the "4" in Fig.7 by "a" we have suddenly the rules of
behaviour to identify the maximum accurring among the n elsments a[I],
a[EJ,.....,., a[n] and this practically only for the price that before

application, the variable n must be put teo its proper value.

I called the change a dramatic ore, for now we have not only given
rules of behaviour which rust be interpreted sequentially —this was already
the case with Fig.6— but we have devised 2 single mechanism fur identifying
the meximum value among any number of given elements, whereas our original
non—sequential machine could anly be built far & previcusly well-defined
number of elements. We have mapped our comparisons in time instead of in
space, and if we wish to compare the two methods, it is as if the sequential
machine "extends itself" in terms of Fig.3 as the reed arises. It is our
last tramsition which displays the sequential processes in their full

glory.

The technical term for what we have called "rules of behaviour" is an
algorithm or a program. {It is not customary to call it "a sequential program!
although this name would be fully correct.) Equipment able ta follow such
rules, "to execute such a program' is called "a general purpose sequential
computer® or "computer" for short; what happens during such a program

execution is called "a s=quential process".

There is a commonly accepted technigue of writing zlgorithms without
the need of such pictures as we have used, viz. ALGOL 60 ("ALGOL" being
short for Algorithmic Languzge). For a detailed discussian of ALGOL &0
I must refer the reader te the existing literature. We shall use it in

future, whenever convenient for our purposes.

For the sake of illustration we shall describe the algarithm of Fig.7

(but for "a" instead of "A") by a segquence of ALGOL statements:
N g

EwDiz3 - 9

" 1= 13 Ji= 15
back: if j £ t-en

begin j:= j + 1;

if a[i] < alj] then i:= j;

goto back
end™ .
The first two statements: "i:=1; j:= 1" are -1 hope- self-expianatory,

Then comes "back:", a so—called label, used to identify this place in the
pragram. Then comes "if j £ n then", a sop~called conditional clause., If the
condition exprzssed by it is satisfied, the follewing statement will be
performed, otherwise it will be skipped. (Anather example of it can be found
two lines lower.) When the sxtent of the program which may have to b= skipped
presents itself primarily as a sesquence af more than cne statement, then ane
puts the so-called statement brackets '"begin™ and “end" around this SEGUENCE,
thereby making it into a single statemesnt as far as its surroundings are
concerned. {(This is entirsly amalogous to the effect of parentheses in
algebraic formulae, such as "a * (b + c)" where the parenthesis pair indicatss
that the whole expression caontained within it is to be taken as factor.) The
last statement "goto back" means that the process should be continued at the
point thus labeled; it does exactly the same thing for us as the upward

ieading line of fig.T.

EwD123 - 10

2. Loosely Connected Processes.

The subject matier af this monograph is the cooperatior ketween loossly
cornected sequential processes and this section will be devoted to a tharough
discussion of a simple, but representative problem, in order to give the

reader some feeling for the problems in this area,

In the previous section we have described ihe nature of a single
sequential process, performing its sequence of actians autonomously, i.e.

irdependent of its surroundings as scon as it hes been started.

wWhen two or more of such processes have to cooperate with each other,
they must be cornected, i.e. they must be able to communicate with zach otler
in prder to exchangs information. As we shall see below, the properties of

these means of intercommunication play a vital role.

Furthermare, we have stipulated that the processes should be connected
loosely; by this we mean that apart from the (rare) moments of explicit
intercommurmicaticn, the individual processes themselves are ta be regarded
as completely independent of sach other. In particular we disallow any
assumption about the relative speeds of the different processes. (Such an
assumption —say"prccesses gesred to the same clock™— could be regarded asg
implicit intercommunication.) This independence of speed ratios is inm strict
gccordance with our appreciation of the single sequential process: its only
essential feature is, that its slementary steps are performed in seguence.
If we prefer to observe the performance with a chroncmeter im our hand, we
may do so, but the procsss itself remains remarkably unaffected by this

ohservation.

I warn the reader that my consistent refusal to make any assumptions
about the speed ratios will at first sight appear @s a mean trick to make
things more difficult than they already are. I feel, however, fully justi-
fied in my refusal. Firstly, we may have to cope with situatioms in which,
indeed, very little is known about the speeds. Far instance, part of the
system may be a manually operated irput station, another part of the system
might be such, that it ean be stopped externally for any period of time,

thus reducing its speed temporarily to zsrc. Secondly —and this is much more

EwDi23 - 1

impartant~ wnsn we think that we can rely upon certain speed ratics, we
shall discover tnat we have been "pourd foolist and penry wise". True that
certain mechanisms can be made simpler under the assumption of speed ratic
restrictiors, The verificatian, however, that such an essumption is always
Justified, Is in general extremely tricky and the task to make, in a reliable
manner, a well behaved structurs out of many interlinked compornents is
seriously aggravated wherm such "analogue intearfersnces” have to be taken
into account as well. (Feor one thing: it will make the proper working a
rather unstapble eguilibrium, semsitive to any change in the different
speeds, as may easily arise by replacement of a component by another —say,
replacement of & line printer by a faster model- or reprogramming of a

certain porticn,}

2.1. A Simple Example.

After these introductory remarks I shall discuss the first problem.

We consider two seguential processes, "process 1" and "process 2", which
for our purposes can be regarded ss cyclic. In each cycle & so-called "criti-
cal section" occurs, critical in the sense that the processes have to be
constructed in such & way, that 2t any moment at most one of the two is
engaged in its critical section. In order to effectuste this mutual exclusion
the two processes have access to a number of cammon variables. We postulate,
that inspecting the present value of such a common variable and assigning a
new value to such a common variable are to be regarded as indivisible, non-—
interfering actions. l.e. when the iwo processes assign 2 new values to the
same common variable M"simultansously", then the assignments are to be regarded
as done the ane after the Dﬁher, the final value of the variable will be one
of the two values assigned, but never a "mixture" of the two. Similarly, when
one process inspects the value of a common variable "simultansously" with
the assignment to it by the other one, then the first process will find

either the old or the new value, but never a mixture.

For our purposes ALGOL 60 as it stands is not suited, as ALGOL 60
bas been designed to describe one single sequential process. We therefore

propose the following extension to enable us to describe parallellism of

execution. When a ssquence of statements —separated by semicolons as usual

EWD12% =~ 12

in ALGOL 60~ is surrounded by the specizl statement bracket pair "parbegin®
and "parend", this is to be interpreted as parallel execution of the con-
stituent statements. The whole construction —lst us call it "s parallel
compound”— can he regarded as a statement. Initiation of a parallel compound
implies simultaneous initiaticn of all its constituent statements, its
execution is completed after the completicn of the execution of all its

constituent statements. E.g.:

"begin 51; parbegin 52; 53; 54 parend; S5 end"

(in which 51,52, 53. 54 and 55 are used to indicate statements} means that
after the completion of S1, the statements 52, 5% ard 534 will be executed
in parallel, and only when they ars all finished, then the exscution of

statemert 55 will be initiated.

With the above conventions we can describe pur first soluion:

"begin integer turn; turn:= 1;

parbegin
process 1: begin Li: if +turn = 2 then gote L1;

critical section 1;
turn:i= 2;
remainder of cycle 1; goto L1
end;
process 2: begin L2: if turn =1 then goto L2;
critical section 2;
turni= 1;

remainder of cycle 2; goto L2

(Note for the inexperienced ALGDL 60 rsader. After "begin" in the first
line we find the so—called declaration "integer turn", thereby sticking to
the rule of ALGOL 60 that program text is not allowed to refer to variables
without having introduced them with the aid of a declaraticn. As this
declaration occurs after the "pegin® of the outermost statement brackes
pair it means that for the whole duration of the program a variable has

been iniroduced that will cnly take on integer velues and to which the

program text can refer by means of the name "turn".)

EWD12% - 13

The two processes communicate with sach other via the common inmteger
"turn”, the value of which indicates which of the two processes is the first
to perform (or rather: to finiszh) its critical section., From the program it
is clear that after the first assignment, the only possible values af the
variable "turn™ are ! and 2. The condition for process 2 to enter its
criticzl section is that it finds at some moment "turn # ", i.e. "turzn = 2%,
But the anly way in which the variable "zurn" can get this value is by the
assignment "turn:= 2" in process 1. As process 1 performs this assignment
anly at the completion of its critical section, process 2 can only initiate
its critical section after the completion of critical section 1. And critical
section 1 could indeed be initiated, because the imitial condition "turn = 1"
implied "turn # 2", so that the potential wait cycle, labeled L1, was
initially inactive. After the assignment "turni= 2" the roles of the two
processes are interchanged. {N.B. It is sssumed that the orly refersnces to

the variable "turn" are the ones explicitly shown in the program.)

Our solution, though correct, is, however, unnecesserily restrictive:
after the completion of critical section 1, the value of the variable "turn"
becomes "2", and it must be =1 again, before the next entrance into critical
section 1. As a result the only admissible succession of critical sections
is the strictly alternating one ™,2,1,2,1,2,1,.....", in other words, the
two processes are synchronized. In aorder to stress explicitly that this is
not the kind of solution we wanted, we impase the further condition "If one
of the processes is stopped well outside its critical section, this is not
zllowed to lead ta potential blocking of the other process.". This makes

our previcus solution unacceptable and we have to look for another.

Our second effort works with two integers "ci" and "“e2", where © = 0 / 1
respectively will indicate that the corresponding process in inside / outside

its critical section respectively. We may itry the following construction:

EwD123 - 14

"begin integer cl, cZ;
cli= 1; c2:= 1;
parbegin
process 1: begin L1: if 2 =0 then goto L1
cl:= O
critical szecticn 1;
cl:= 1;
remeinder of cycle 1; goto L1
Eend;
process 2: begin L2: if 1 = O then goto L2;
c2:= O
critical section 2;
c2i= 1;
remsinder of cycie 2; gote L2
end

parend

end"

The first assignments set both c's = 1, in accordance with the fact
that tHe processes are started ocutside their critical sections. Durimg the
entire execution of criticsl section 1 the relation "ol = O" halds and the
first lire of process 2 is effectively a wait "Wait as long as process 1 is
in its critical section.", The trial solution gives indeed some protection
against simultaneity of critical section execution, but is, alas, tao simple,
because it is wrong. Let first process 1 find that c¢2 = i; let process 2
inspect c! immedistely afterwards, then it will (still] find 1 = 1. Both
pracesses, having found that the other is not in its critical section, will

conclude that they can enter their own section safely!

We have been too optimistic, we must play a safer game. Let us invert,
gt the beginning of the parallel processes, the inspection of the "c" of the

other and the setting of the own "c". We thesn get the construction:

EwD123 - 15

"begin integer 1, c2;
cli=1: c2:= 1;
parbegin
process 1: Legin Al: cl:= O;
L1: if c2 =0 then gato L1
critical section 1;
cli= 1;
remairder af cycle 1; goto A1
end;
process 2: begin A2: c2:= Q;
L2: if <ol = Q thern goto L2;
critical sesction 2;
c2:=1;

remairder of cycle 2; goto A2

parend

end"

It is worth while to verify that this solution is at least completely
safe. Let us focus our attention on the moment that process 1 finds 2 = 1
and therefore decides to enter its critical section. At this moment we can
conclude

1} that the relation "ci = Of already holds and will continue to hold
until process 1 has completed the execution of its critical section,

2) that, as "eZ = 1M holds, process 2 is well outside its critical
section, which it cannot enter as long as "¢l = Q" holds, i.e. as long
as process 1 is still engsged in its critical section.

Thus the mutual exclusion is indeed guaranteed.

But this solutiaon, ales, must also be rejected: in its safety measures
it has been too drastic, for it contains the danger of definite mutual
blecking. When after the assignment "cl:= O" but yet before the inspection
af c2 (both by prccess 1) process 2 performs the assignment "c2:= O", then
both processes have arrived at label L1 or L2 respectively and both relations
"c! = O" and "c2 = O" hold, with the result that both processes will wait

upon each other until eternity. Therefore also this solution must be rejectad.

EWZDio3 - 16

It was CK to set one's own "c'" bafore inspecting tae "ot af the other,
But it was wrong to stick to one's owe cosetiing and just 2 wait. This is

(samewhat) remedied in the following constructior:

parkegin
pracess 1: hegin L1: cl:= O

if e2 =0 sthen
begin cl:= 1; goto L1 end;

critical sectian 1;

remainder of cycle 1; goto L1
end;
process 2: begin L2: cZ:= O
if et = 0 then
begin e2:= 1; gota L2 end;
critical section 2;
c2:= 1;

remainder of cycle 2; goto L2

eng
parend
end"
This eonstruction is as safe as the previcus one and, when the assignments
"eli= O" and "c2:= O" sre performed "simultaneously” it will mot necessarily

lead to mutual blocking ad infinitum, because both processes will reset their
own "c” back ta 1 before restarting the entry rites, thereby enabling the
other process to catch the opportunity, But ocr principles force us %o reject
also this solution, for the refusal to make any assumptions about the speed
ratio implies that we have to cater for all speeds, and the last sclution
admits the speeds to be so carefully adjusted that the processes inspect

the other's "c" only in thase periods of time that it valus is = Q. To make
clear that ws reject such sclutions that only work with some luck, we state
our next reguirement: "If the two processes are asbout to enmter their critical
sections, it must be impossible to devise for them such finite speeds, that

the decisian which one of the two is the first to enter its critical section

is postponed until eternity.".

EWD12% -

-1

In passing we note, that the solution just rziscted is quite accsptable
in everyday life, E.g., when two peaple sre telking aver the tzlephone and
they are suddenly disconnected, as a rule both try to reestablish the cornec—
tion. They both dizl ard if they get the signal "Number Engaged",'they put
down the receiver and, if not already called, they try "some" seconds later.
Of course, this may coincide with the next effart of the other party, but as
a rule the cannection is reestablished succesfully after very few trials.

In our mechanical circumstances, hawever, we cannot accept this pattern of

bshaviour: our parties might very well be identical!

Quits 2 collection af trial solutions have been shown to be incorrect
and at some moment peaple that had played with the problem started to doubt
whether it could be solved a% all. To the Dutch mathematician Th.J.Dekker
the credit is due for the first correct solution. It is, in fact, a mixture
of our previous efforts: it uses the "safe sluice" of our last constructions,
together with the integer "turn™ of the first ons, out only to resolve
the indeterminasteness when reither of the two Immediately succeeds. The

initial wvalue of "turn® could have been 2 as well.

"begin integer cl, =2, turn;

cli="1; c2:= 1; turn:= 1;
parbegin
process 1: begin Al: cl:= O
Lt: if c2 =0 then
begin if turn

cl:i=1;

1 then goto L1,

Bi: if turmn = 2 then goto B1;
goto Al
end;

critical section 1;

turn:= 2; cl:= 1;

remainder of cycle 1; goto A1

end;
process 2: begin A2: c2:= (;

L2: if e1 =0 then

begin 4if turn = 2 then goto L2;
c2i= 13
B2: if +turn =1 then pgoto Bé;

goto A2

end;

Ewpiz3 - 18

critical sectiorn 2;

turn:= 1; c2:= 1;

remainder of cycles 2; gota A2

parend

sngd"

We shall now prove the correctness of this solution. Jur first obser—
vation is that each process only operates on its own "¢, As & result process
1 inspects "e2" only while "c1 = O", it will only enter its critical section
providea it finds "c2 = 1"; for process 2 the analogous observation cam be

made .

in short, we recognize the safe sluice of our last conmstructions and the
solution is safe im the sense that the two processes can never be in their
criticsl sections simultaneously. The second part of the proaf has to show
that in case of doubt the decision which of the two will be the first to
enter cannot be postponed until eternity. Now we should pay some attention
to the integer "turn™: we note that assignment to this variable only occurs
at the and —or, if you wish: =s part- of critical sections and therefore we

we can regard the variable "turn" as a constant during this decisicn process.

Suppose that ™turn = 1", Then process 1 can anly cycle via L1, that is with
*cl = O" and only as lang as it finds "c?2 = O". But if "turn = 1" then
process 2 can only ecycle via B2, but this state implies "c2 = 1", sc that
process 1 cannot and is bound to enter its critical sectionm. For "turn = 2%

the mirrcred reascning applies. As third and final part of the proof we
observe that stopping, say, process 1 in "remainder of cycle 1" will not
restrict process 2: the relation "cl = 1" will then hold and process 2 can
enter its critical section gaily, quite independent of the current value of
"turn®™. And this completes the'pruof of the correctness of Dekker's solution.
Those readers that fail to appreciate its ingenuity are kindly asked to
realize, that for them I have prepared the ground by means of a carefully

selected set of rejected constructions.

EWD12% - 19

2.2. The Generalized Mutual Exclusion Problem.

the problem of section 2.1 has a nmztural generalizstior: givenm N cyelic
pracesses, sach with a critical sectier, can we construct them inm suck a wWay,
that at any moment at mast cne of them is =ngaged in its critical section?
We assume the seme means of intercemmunication available, i.z2. & set of
cammonly accessible variables. Furthermore our solution has to satisfy the
same requirsments, that stopping one process well outside its critical section
may in no way restrict the freedom af the others, and that if more than one
process is about to enter its eritical section, it must be impossible to

devise for them such finite speeds, that the decision which are af them is

the first one to enter its critical section, can be postponed until =ternity.

In order to be sble to describe the solution in ALGOL 60, we need the
concept of the array. In section 2.! we had to introduce a "c" for sachk of

the two processes and we did so by declaring

"integer <1, c2".
Instead of enumerating the quantities, we can declare -under the assumption

that "N" has a well defined positive value-

"irteger array C[T : N]"

which means, that at one stroke we have introduced N integers, accessible

under the names "cEsubscript}“,

where "subscript" might take the values 1, 2,, N.

The next new ALGOL €0 feature we shall use is the so-called "for clause",

which we shall use in the following form:
"for ji= ! step ! urtil N do statement S"

and which enables us to express repetition of "statement 5" quite conveniently.
In principle, the for clause implies that "statement S" will be executesd M
times, with "j" in sucecession =1, = 2,, = N. (Wa have added "in
principle"; for via a goto statement as constituent part of statement S

and leading out of it, the repetition can be ended earlier.j

Finally we need the logical operator that in this monograph is denoted

by "and". We have met the conditional clause in the form:

Ewdt23 - 20

"if conditiosn then statement!
We shell now meet:
"if conditicn 1 and condition 2 then statement »

meaning that stetement 5 will anly be sxecuted if "condition 1" and "condition
2" are both satisfied. (Once more we =hould like to stress that this monagranh
is not an ALGOL 60 programming marmual: the abave —losse!= explanations of
ALGOL 60 have only been introduced to make this monograph as self-contained

as possible.)

Witk the notational =ids just sketched we carm describe our soluticn

for fixed N as fallows.

The overall structure is:

7

"begin integer array b, c[O : Nj;

integer turn;
for turn:= QO step 1 until N da

Eggig_b[turn]:: 1 c[turn]:: 1 end;
turn:= Q;
parbegin
process 1: begin...eeenieniiiaaaa... end;
pIoCess 21 Eﬁﬂiﬂ""""""""""f?lii

v e e

process N: begim.....coiiiiiaveess...end

parend

end” .

The first declaration introduces two arrays with N + 1 elements each,
the next declarstion intraduces a single integer "turn". In the following
for clause this veriable "turn" is used toc take on the successive values
Yy 2, 3ye4veaes N, 50 that the two arrays are initizlized with 21l elemsnts

= 1. Then "turn" is set = O (i.a. none of the processes, numbered fram 1

orwards, is privileged). After this the N processes are started simultaneously.

The N processes are all similar. The structure of the i-th process is

as follows (1 < i <N} :

EwD123 — 2°

"process 1: besgin | integer jj;
Al b{i]:: Qs
Lis if tern £ i then

begin c{i]:: 13

if b[turn] = 1 then turn:= i
gote Li

end;

C[i]:: 0;

for j:=1 step 1 until N do

begin if i # 1 znd c[i] = 0 then gato Li end;
critical secticn 1i;
turn:i= O3 c[i]:: s b[i]:: 13
remainder of cycle 1; goto A1

end” .

Remark. The descriptien of the M individusl processes starts with = declaration
"integer j". According to the rules of ALGOL &0 this means that each process

introduces its own, private integer "i" (a so~called "local guantity™).

We leave the proaf to the reader. It has to show again:
1) that at any moment at most one of *he processes is engaged in its
critical section
2) that the decision whick of the processss is the first to snter its
critical section cannot be postponed until eternity
2) that stopping a process in its "remainder of cycle" has no effect

upon the others.

Of these parts, the second ane is the mast difficult ore. {Hint: as soon
as one of the processez has performed the assignment "turn:= i", no new
processes can decide to assign their number to turn before a critical section
has been completed. Mind that two processes can decide "simultanesusly" to

assign their i-value to turn!)

(Remark, that can be skipped at first raading.}
The program just described inspscts the value of "b[turn]“ where both
the array "b" and the integer "turn® are in common store. We have stated

that inspecting a single variable is an indivisible action and inspecting

EwD123 - 22

"b[turn]" can therefore anly mean: inspect the vslue of "turn", and if this
happers to be = 5, well, then inspect ”b[BJ". Or, ir more explicit ALGOL:

Yprececess it begin integer j, k;

ki= turn; if b[k] =1 ther ool ")
implying that by the time *hat "b[k]" is inmspected, "turn" may zlready have
2 value different from the current one of "k".
Without the stated limitaticns in communiceting with the commcn stare, a
possible interpretation of "the value of b[turﬁ]" would have been "the value
of the element of the array b as indicated by the currenmt value of turn",
In so-called uniprogramming —i.e. & singls seguential process operating
on geartities lacal to it~ the two interoretstions ars squivalent. In
multiprogramming, where other active processes may aceess and change the
seme common information, the two interpretaticns make a great difference!
In particulsr for the reader with extensive experience in uniprogramming
-this remark has been inserted as an indication of the subtleties of the

games we are playing.

2.3. A Linguistic Interlude.

{This section may be skipped at first reading.)

In section 2.2. we dsscribed the cosperstion of N processes; in the
overall structure we used a vertical sequemce of dots between the brackets
"parbegin™ and "parend". This is nothing but & loose formalism, suggesting
to the human reader how to compose in our notation a set of N cooperating
sequential processes, under the condition that the value of N has been fixed
beforehand. It is a2 suggestion for the construction of 3, 4 or 5071 cooperating
processes, it does not give & formal description ef N such cecperating processes
in which N oceurs as a parsmeter, i.e, it is not & descripticn, valid fer amy

value of N.
It is the purpose of this section to shaw that the concept of the
so~called "recursive procedure™ of ALGOL €0 caters for this. This concept

will be sketched briefly.

We have ssen, how after "begin" declarations could occur in order to

EWD123 - 2%

introduce ard to neme either single varibles (oy snumeration of their names ;
or whole ordered sets of variables (viz, in the array declaration), Witk
the so-called "procedure declaration” we can define and name a certain
action; such an action may them be inuoked hy using its name &s a statement,

thereby supplying the parametsrs, to which the action should be applied.

As an illustration we conszider the following ALGCL &0 program:

"pegin integer a, b;
procedure square{u, v integer u, v;
begin ui= v * v end;
L: sguare{a, 3); sgquars(b, a): squars=(a, b)

End"

In the first line the integer named "2" and "b" ars declsred. The next
line decliares the procsdure named "square", aperating on two parameters,
which are specified to be single integers (end not, say, complete a;rays}.
This line is called “the procedure heading®™. The immediately following
stetement ~the so-rcalled "procecure body"- describes by definition the
action named: in the third line —in which the bracket pair "begin....end"
is superfluous— it is told that the action of "square" iz to assign to the
first parameter the sguare of the value of the second one. Then, labeled "L™,
cames the first statement. Befaore its execution the values of both "a" and
"b" are undefined, after its execution "a = 9", After the execution of the
next statement, the value of "b" is therefore = 81, after the exscution of

the last statement, the value of "a" is =6561, the value of "b" is still = 87.

In the previous example the procedure mechanism was essentially introduced
ag a means for abrewviation, a means for avaiding to have to write down the

"body" three times, although we could have dorme so guite easily:

"begin integer a, b;
Lt a:= 3 % 33 hiz a * a; ai= b * b

ernd".

when the body is much wmore camplicated than in this exampls, & program

alaong the latter limes tends indeed to be mych mare lengthy.

EwD123 ~ 24

This techrnique of "substituting For the call the appropriate version
of the body" iz, however, no longer possible as soon as the procedure iz a
so—called recursive one, i.e. may call itself. [t is then, that the procedurs

really enlarges the expressive power of the programming language.

A simple example might illustrate the recursive procedure, The greatest
common divisor of two given natural numbers is
1) if they have the same value equal to this value
2) if they have different values equal to the greatest common divisor of the
smallest of the two and their differencs.
In other words, if the greatest common divisor is not trivial {first case)
the preblem is replaced by finding the greatest zammon divisor of two

smaller numbers.

{In the following program the irmsertion "value v, w;" can be skipped by the
reader as being irrelevant for our present purposes; it indicates that for
the parameters listed the body is anly interested in the numerical value

of the actual parameter, as supplied by the :all.)

"begin integer a;
procedure GCU(U, v, w); value v, wi integer u, v, w;

Eegin if v = w then ui= v
else
begin if v < w then GCG(u, v, w = v)
else GCD(U, Vot ow, w)
&nd;
GCo(a, 12, 33)

end" .

(In this example the more elabarate form of the conditional statement
is used, viz.:

"if condition then statement 1 else statement 2".

meaning that if "condition" ig satisfied,"statement 1" will be executed and
"statement 2" will be skipped, and that if "econdition" is not satisfied,

"statement 1" will be skipped and "statement 2" will be exescuted.)

The reader is invited to follow the pattern of calls of GCD and ta

see, how the variable "a" becomes = 3; be is also invited to convince

EWD123 - 25

nimself of the fact that the (dynamic} pattern of calls depends on the
parameters supolied and that the substitution technigue -replace call by

body— es applied in the previous example weuld lead to difficuitiss here,

We shall now write a program to perform a matrix * vector multiplication
in which
1] the ocrder of the ™M scalar * scalar products to be summed is indeed
prescribed {(the Tows of the matrix will be scannad from left to right)

2) the N rows of the matrix can be processed in parallel.

{Where we do not wish ta impuse the restriction of purely integer values,
we have used to declaraior "real" instead of the declarator "integer™; fur-

thermore we have introduced an array with two subscipts in a, we hape,

obvicus manner.)

It is assumed that, upon entry of this block af program, the integers

"M" and "N have positive values.

"begin real array matrix[1 s N, 1 M];

real array vectmr[? : M];
real array product[1 : N];

pracedure ruwmult(k); value k; integer k;

begin if k > O then

parbegin
begin real s; integer j;
si= O3

Jor j:= 1 step 1 until M do
si= s + matrix[k, j] * vectar{j];
product[k J:= s
end;
rownult{k - 1)

parend

rowmult(N);

end"

EWD123 - 26

%, The Mutual Exclusior Problem Revisited.

We return tg the problem of mutual exclusion in tims of critical secticrs,
&s introduced in sectior 2.1 and generalized in section 2.2. This section
deals with & more efficient technique for selving this problem; only after
having done so, we have adequate means for the description of examples, with
which [hope te convince the reader of the rather fundamental importance
of the mutual exclusion problem. In ather werds, I must appesl to the patierce
of the weondering reader (suffsring, as I am, from the sequential nature of

human cammunicaticnl}

%.1. The Need for a More Realistic Solution.

The solution given in section 2.2 ie interesting in as far as it shows
that the restricted means of commurication previded are, from a theoretical
point of view, sufficient to selve the prablem. From other points of view,

which are just as dear ta my heart, it is hopelessly inadequate.

To start with, it gives rise to a rather cumbersome description af the
individual processes, in which it ig all but transpzrent that the overall
betavigur is in accerdance with the conceptuaily sc simple requirement of
the mutual exclusion. In other words, im some way or another this sclution
is a tremendous mystificatior. Let us try to isclate in our minds in which
respect this solution represents indeed a mystification, for this investigation

could give the clue:to improvement.

Let us take the period of time during which one af the processes is in
its critical section. We all know, that during that peried, no other processes
can enter their critical section and that, if they want to do so, they have to
wait until the current critical section execution has been completed. For the
remainder of that perind hardly any activity is required from them: they have

to wait anyhow, and as far as we are concerned "they could go to sleep".

Our solutisn dees not reflect this at all: we keep the processes busy
setting and inspecting common variables all thes time, as if no price has to
be paid for this activity., But if our implementation —i.e. the ways in which

or the means by which these processes are carried out- is such, that "sleeping™

CEWDI2% - 27

is a less expensive activity than this busy way of waiting, then we are
fully justified {now also from an ecomamic point of view) to call our

solution misleading.

In prasent day computers, there are at least two ways in which this
active way of waiting can bs very expensive. Let me sketch them briefly.
These ceomputers have two distinct parts, usually called "the processor" and
"the store". The processor is the active part, in which the arithmetic and
logical cperations are performed, it is "active and small”; in the store,
which is "passive and large" resides st any moment the information, which
is not proeessed at that very moment but only kept there for future reference.
In the total cumputatiunal.process information is trsnsported from store tg
processor as soon &s it has to play an active role, the information in store

can be changed by transportation in the inverse direction.

Such a computer is a very flexible toal far the implementation of
sequential processes. Fven a computer with only ore single processor can
be used to implement z number of concurrent sequential processes. From
& macroscopic point of view it will seem, as though all these processes
are carried out simultaneously, a more closer inspection will reveal,
however, that at any "microscopic" moment the processor helps alorng only
one single program, and the overall picturs only results, because at
well chosen moments the processor will switch over from ore process to
another. In such an implementation the differermt processes share the same
processor and activity of ome of the processes (i.e. a non-—zaro speed) will
imply a zero speed for the others and it is then undesirsble, that precious

processor time is consumed by processes, which cannot go on anyhow.

Apart from processor sharing, the store sharing could make the unnecessary
activity of a waiting process undesirable. Let us assume that inspection of
or assignment to a2 "common variable™ implies the access to an information
unit —a sa:called "word"- in a ferrite core store. Access to a word in a
core stnre-takes a finite time and for technical reassonms only ore word can
be accessed at a time. When more than one active process may wish access to
words of the same core store, the usual arrangsment is that in the case of
immarent coincidence, the storage access requests from the different active
processas sre granted according to a built in priority rule: ths lawer

priority process is automatically held up. (The literaturs refers to this

EWD123 - 28

situation when it describes "a communication channel stealing a memary
cycle from the processor.) The result is that frequent inspection of
common variables may slow down the process, the local quantities of which

are stored in the same cors store.

%.2. The Synchronizing Primitives.

The origin of the complications, which lead to such intricate solutions
as the ome described in section 2.2 is the fact that the indivisible accesses
to cammon vari;ﬁles are always "orne-way information traffic": an individusl
process can either assign a new value or inspect a current valus. Such an
ingpection itself, however, leaves no trace for the aother pracesses and the
consequence is that, when a process want %o react to the current value aof a
comman variable, its value may be changed by the other processes between
the moment of its inspection amd the following effectuation of the reactign
to it. In other words: the previous set of communication facilities must be

regarded as inadequate for the problem at hand and we should look for better

adapted alterrmatives.

Such an altermative is given by introducing
a) among the common variables special purpose integers, which we shall call
"*semaphores".
b) among the repertoire of actions, from which the individual processes have
to be constructed, two new primitives, which we call the "P-operation®
and the "V-operation" respectively. The latter operstions always operate
upon a semaphore and represent the only way in which the corcurrent processes

may accass the semaphores.

The semaphores are essentially non-negative integers; when only used
to solve the mutual exclusion problem, the range of their values will even
be restricted to "O" and ™1™, It is the merit of the Dutch physicist and
computer designer Drs.C.5.3cholten to have demonstrated a considerable field
of applicability for semephores that can also take on larger values. When
there is a need for distinetion, we shall talk sbout "binary semaphores" and

"general semaphores" respectively. The definition of the P- and V=operation

EwD123 = 29

that I shall give nmow, is insensitive to this distictian,

Definition. The V=operation is an operation with one argument, which must

be the identification of & semaphore. (If "S1M and "S2" denate semaphoares,
we can write "V(51)" and "(S2)",) Its function is to increase the value of
its argument semaphore by 1; this increase is to be regarded as an indivisible

operatian.

Note, that this last sentence makes "V(S1)" inequivalent ts "S1:= 51 + v,
For suppose, that two processes A and B both contain the statement "y(51)"
and that both should like to perform this statement at = moment when, say,
"51 = 6". Excluding interference with 51 from other processes, A and B will
perform their V-operations in an unspecified arder =&t least: outside our
cantrol- and after the completion of the second V-operation the fimal value
of 51 will be = 8. If 5! had not been a cemaphore but just an ordinary common
integer, and if processes A and B had contained the statement "S1:= 51 + 1"
instead of the V~operation on 51, then the following could hapeen. Process
A evaluates "S1 + 1" and computes "7"; hefore sffecting, howsver, the assignment
of this new value, process B has reached the same stage and also svaluates
"51 + 1", computing "7", Thereafter hoth processes assign the value "7" to
1 and one of the desired increases has been lost, The requirement of the
"indivisible operation" is meant to exclude this occurrence, when the V-

operation is used.

Definition. The P-operation is an operation with one argument, which must

be the identification of a semaphore. (If "S1" and "S2" dengte semaphores,
we can write "P(51}" and “9(52)".) Ity function is to decrease the value of
its argument semaphors by 1 as soon as the resulting value would be non-
negative. The completion of the P-operation —i.e. the decision that this is
the appropriate moment to effectuate the decrease and the subsequent decrease

itself- is to be regarded as an indivisible operation.

It is the P-operation, which represents the potential delay, viz. when
& process initiates a P-operation on a semaphore, that at that moment is
= 0, in that case this P-operation cannot be completed until another process
has performed a V-operation an the same semaphore and has given it the value

"". At that moment, more than one process may have initiated a P-operation

twl12% - 30

on that very same semaphore. The clause that completion of a P-cperation is
an indivisible action means that when the semaphore has got the value "i",
only one of the initiated P-operatiorns on it is allowed *o be completed,

Which one, again, is left unspecified, i.e. at least cutside our control.

At the present stage of our discussions we shall take the implementability

of the P-and V-operations for granted.

3.3. The Synchronizing Primitives Applied to the Mutuzl Exclusion Problem.

The solution of the N processes, each with a critical section, the
sxecutions of which must exclude ane anather in time (see section 2.2) is
now trivial. It can be done with the aid of a single binary s=maphcre, say
"free". The value of "free" equals the number of processes allowed tao enter

their critical section now, or:

"free = 1" means: none of the processes is engaged in its ecriticzl section
"free = Q" means: one of the processes is engaged in its critical sectian.

The overall structure of the solution becomes:

"begin irteger free; free:= 1;
parbegin
pracess 1: beginm............. .. 20d;
process 2: begin...............2nd;

process N: begin...............80d;
parend

end"

with the i~th process of the form:

"process it bhegin
Li: P(Frae); critical section i; V{free);
remainder of cycle i; goto Li

end" .

EwD123 - 31

4. The General Semaphore,

4.1, Typical Uses of the General Semaphore.

We consider two processes, which are called the "producer™ and the
Mconsumer" respectively. The praducer is a cyclic process and each time it
goes through its cycle it produces a certain portien of information, that
has to be processed by the consumer. The comsumer is alsg = cyclic process
and each time it goes through its cycle, it can process the mext portion of
information, as has been produced by the producer. A simple example is given
by a computing process, producing as "portions of information® punched cards
images to be punched out by a card punch, which plays the role of the

consumer.

The producer — consumer relation implies @ one-way communication channel
betwsen the two processes, slong which the portions of information can be
transmitted. We zssume the two processes to be connected for this purpose
via a buffer with unbounded capacity, i.e. the portions produced need not
to be consumed immediately, but they may queus in the buffer. The fact that
ro upper bound has heen given for the capacity of the buffer makes this

example slightly unreslistic, but this should not trouble us too much now.

{The origin of the name "buffer" becomes understandable as soon as we
investigate the ccnseguences of its absence, viz. when the producer can anly
offer its next portian after the previous portion has been actually consumed.
In the computer - card punch example, we may assume that the card punch can
punch cards at @ constant speed, say 4 cards per second. Let us assume, that
this cutput speed is well matched with the production speed, i.e. that the
computer can perform the card image production process with the sams average
speed. If the connection between cemputing process and card punch is unbuffered,
then the couple will only wark continuously at full speed when the card pro=-
duction process produces a card every quarter of a second. If, howaver, the
nature of the computing process is sueh, that after ons or two seconds vigorous
camputing it produces 4 to 8 card images in a single burst, then unbuffered
connection will result in a period of time, in which the punch will stand
idie (For lack of information), followed by a periog in which the computing

process has to stand idle, because it cammot get rid of the mext card image

EwD123 - 32

befure the preceding one has been actually punched. Such irregularities in
production speed, however, can be smoothed cut by a buffer of sufficient

size and that is, why such @ queuing device iz called "a buffer".)

In this section we shall not deal with the varicus techrigues of imple-
menting & buffer. It must be able to contain successive portions of informaticn,
it must thersfore be & suitable storage medium, accessible to koth procssses.
Furthermore, it must not only contzin the portions themselves, it must alsc

represent their lineair ordering. (In the literature two well=known techniques
are described by "cyclic buffering" and "chaining" respectively.) When the
praducer has prepared its next portion toc be added to *the buffer, we shall
indicate this action simply by "add portion te buffer", without going into
further details; similarly, the consumer will "take portion from buffer",
where it is understood that it will be the ocldest porticn, still im the

buffer. (Another name of 2 buffer is a "First-In—first~Out-Memory.)

Omitting in the cutermost bleck any declarations for the buffer, we
can now construct the two processes with the aid of a single gemeral semaphore,

called "mumber of queuing portions".

"begin integer npumber of queuing portions;

number of gueuing portions:= Q;

parbegin
producer: begin

again 1: produce the next partion;
add portion to buffer;
V(number of gqueuing portions);
goto again 1

&nd;
cansumer: begin

again 2: P(number of queuing portions};

take portion from buffer;

process portion taken;

goto again 2

parend

eng"

Ewd12% - 33

The first line of the producer represents the coding of the process
which forms the next portion of information; it can be conceived —it has a
meaning—- guite iﬁdependent of the buffer for which this partion is interded; when
it has been executed the next portion has besn succesfully completed, the
completion of its construction cam no longer be dependent gn other (unmentioned)
conditions. The second line of coding represents the actions, which define
the finished portions as the next ome in the buffer; after its execution
the new portion has bgen added completely to the buffer, apart from the fact
that tke consumer does not kmow it yet. The V-operation finally confirms its
presence, i.e. sigrals it ta the consumer. Note, that it is absolutely essen—
tial, that the V-operation is precede by the compl=te additior of the portion.

About the structure of the consumer analogous remarks can be made.

Particulsrly in the case of buffer implemertation by means of chaining
it dis not umusual that the operaticns "add portion to buffer" and "take
portion from buffer" -operating as they are on the same clerical status
information of the buffer— could interfere with each other in = most unde-
sirable fashion, unless we see to it, that they exclude sach other in time.
This can be catered for by a binary semaphore, called "buffer manipulation”,

the values of which mean:

=0 ¢ either adding to or tsking from the buffer is tsking place

=1 : neither adding to ner taking from the buffer is taking place.

The program is as follows:

EWD123 - 24

"beagin integer number of gqueuing portions, buffer manioylation;
number of gQueuing porticns:= Q;
buffer manipulation:= 1
parbegin
producer: begin

again 1: produce next portion;
P{buffer manipulation};
add portion to buffer;
V(buffer manipulation);
V(number of queuing purtions);
goto again 1
End;
consumer: hegin
again 2: P(number af aueing portimns);
P{buffer manipulation);
take portion from buffer;
V(buffer manipulation);
process portion taken;
gotc again 2
end

parend

end"

The reader is requested to convince himself that
a) the order of the two V-operations in the producer is immaterial

b) the arder of the two P-operations in the consumer is essential,

Remark. The presence of the binary semapbore "buffer manipulation®
has another consequence. We have given the program for one producer and
one consumer, but now the extension to more producers and/or more consumers
is straightforward: the same semaphore sees to it that two or mare additions
af new portions will never get mixed up and the same applies to two or more
takings of a portion by different consumers. The reader is reguested to
verify that the order of the two V—operaticns in tne producer is still

immaterial.

£wn123 - 3§

4.2. The Superfluity of the General Semaphore.

In this section we shall show the superfluity of the general semaphore
and we shall do so by rewriting the last program af the previous section,
using hinary semaphores only., (Intentianally I have written "we shall show"
and not "we shall prave the superfluity". We do nat have at our disposal
the mathematical apparatus that would be needed to give such a proof and I
do not feel inclined to develop such mathematical apparatus now. Nevertheless
I hope that my show will be convincingl) We shall first give a solutian and

pastpone the discussion till afterwards.

"begin integer numgueupor, buffer manipulation, consumer delay;

numqueupor:= Q; buffer manipulation:= 1; consumer delay:= O;

parbegin
producer; pegin
again 1: produce next partion;
P(buffer manipulation};
add portion to buffer;
NUMQUBeUpPOT = numguaupor + 1;
if numgueupor = 1 then V{consumer delay);
V(buffer manipulation);
goto again 1
end;
consumer: hegin integer oldnumgusupor;
wait: P(eonsumer delay);
go on: P{buffer manipulation);
take portion from buffer;
NUMGUBUPST ;= numqueupor — 1;
cldnumqueuper:= numquepor;
V(buffer manipuiation);
process partion taken;

if oldnumgueupar = O then goto wait clse goto go on

parend

end" .

Relevant in the dynamic bebaviour af this program are the perisds of time

EWD123 - 35

during which the buffer is empty. (As long as the buffer is nat empiy, the
carsumer can go on happily at its maximum spesd.) Suck a period can only be
initiated by the comsumer {(by taking the last portion pressnt from the buffer),
it can only be terminated by the praoducer (by adding a portion to an empty
buffer). Thase two events can be detected unambiguously, thanks to the
binary semaphore "buffer manipulation", that guarantees the mutusl exclusion
rnecessary for this detsction. fach such period is accompanied by a P= znd =
V=operatior on the new binary semaphore "consumer delay". Finally we draw
attention to the local variable "oldnumgueupor" of the consumer: its value
is set during the taking of the portion and fixes, whether it was the

last porticn then present, (The more expert ALGOL readers will be aware that
we only need to store a single bit of information, viz., whether the decrease
of numgueupor resulted in & value = 0; we could have used a local variable
of type Booclean for this purpose.) When the consumer decides ta go to
"wait", i.e. finds "oldnumgqueupor = O", at that moment "numgueupor" itself

could already be greater than zero again!

In the previous program the relevant cccurrence was the period with
empty buffer. One can remark that emptinsss is, in itself, rather irrelevant:
it only matiers, when the consumer should like to take a next portion, which
is still absernt. We shall pregram this version as well. In its dynamic
behavicur we may expesct less P~ and V~operations on "consumer delay", viz,
not when the buffer has been empty for a short while, but is filled again
in time to make delay of the consumer unnecessary. Again we shall first

give the program and then its discussion,

EWD12% = 37

"begin integer numgueupor, buffer mamipulation, consumer delay;

numgueupor:= O; buffer manipulaticn:i= 1; consumer dzlay:= Q;

parbegin

producer: begin
again 1: produce next portion;
P(buffer menipulation);
add porticn to buffer;
TUMQUEUPOT = numquedpar + 13
if numgueupor = C then
begin V(buffer manipulation);
U{ consumer dElay) end
V(buffer manipulation);
goto again 1
&nd;
consumer: begin
again 2: P{buffer manipulation);
numgueupari:= numgueupor — 1;
if numgueupor = — 1 then
begin V(buffer manipulation);
P(cunsumer delay);
P(butfer manipulation) end;
take partion from buffar;
V(buffer manipulation);
process portion taken;
goto again 2
end

parend

end"

Again, the semaphore "buffer manipulatien" caters for the mutual
exclusion of critical sections. The last six lines of the preducer could

have been formulated as follows:

"if numgueupor = O then V{consumer delay);

V(buffer manipulatian); goto again 17

EwD12Z - 28

In not doing =0 I have followed a personal taste, viz., to avoid P~ and
\=operations within critical sections; a personal taste to which the

reader should not pay too much attention.

The range of poesible values of "numgueupor" has beern extended with
the value "=1", meaning [outside critical section execution) "the buffer
is not only empty, but its emptyness has already been deiecied by the
consumer, which has decided to wait". This fact can be detected by the

producer when, after the addition of one, "rumgueupor = 0" holds.

Note how, in the case of "mumgueupor = — 1", the critical section of
the consumer is dynamically broken into two parts: this is most essential,
for otherwise the producer would never get the opportunity to add the

portian that is already so much wanted by the cansumer.

(The program just described is known as "The Sleeping Barber”. There is

& barbershop with a separate waiting room. The waiting room has an entry

and next to it an exit to the room with the barber's chair, entry and

exit sharing the same sliding door which always cleses one of them; furthermore
the entry is so small that only orne customer can enter it at a time, thus

fixing their order of entry. The mutual exclusions are thus guaranteed.

Barber's Chair L\
AU

Waiting room

When the barber has finished a haircut, he opens the door to the
waiting room and inspects it. If the waiting room is not empty, he invites
the next customer, octherwise he goes to sleep in one of the chairs in the
waiting room. The complementary behaviour of the customers is as follows:
when they find zeroc or more customers in the waiting room, they just wait
their turn, when they find, however, the Sleeping Barber -"numgueypor = - 1"-

they wake him up.)

EwD123 ~ 3G

The two programs given present a stirong hint to the conclusion that
the general semaphore is, indeed, superfliucous. Nevertheless we shaal not
try to abolish tha general semaphore: the one-sided synchronisation
restriction expressible by it is & very common one and comparison of the
solutions with and without general semaphore shows convincingly that it

should be regarded as an adequate tool.

4.%. The Bounded Buffer.

[shall give a last simple example to illustrate the use of the
general semaphore. In section 4.1 we have studied 3 preducer and a consumer
coupled via a buffer with unhounded capacity. This is a typically ane-sided
restriction: the producer can be arbhitrarily far ahead of the consumer, aon
the other hand the consumer can never he ahaed of ihe producer. The relation
becomes symmetric, if the two are coupled via a buffer of finite size, say
N porticne. We give the program without any further discussion; we ask the
reader to canvince himself of the complete symmetry. ("The consumer produces
and the producer comsumes empty positions in the buffer".) The value N,
as the buffer, is supposed to be defimed in the surrounding universe inte

which the following program should be embedded.

"begin integer number of gueuing portions, number of empty positions,
buffer manipulaticn;
number of gueuwing portions:= O;
number of empty positions:= N;
buffer manipulation:= 1;
parbegin

producer: begin
again 1: produce next portion;

P(number of empty positions);

P(buffer manipulation);

add portion to buffer;

V(buffer mamipulatiun);

V{number of fueuing portions); goto again 1 end;
consumer: begin -

again 2: P(number of gueuing portions);

P(buffer manipulation);

take portion from buffer;

v{buffer manipulatian);

V{number of empty pasitians);

process portion taken; goto again 2 end

parend

eng” .

EwD12Z - 40

5. Cooperation via Status Varisbles.

In sections 4.1 and 4.3 we have illustrated the use of the general
semaphore, It proved an adequate tool, be it as implementation of a rather
trivial form of interaction. The rules for the consumer are very simple: if
there is something in the buffer, consume it. They are of the same simplicity
as the behaviour rules of the wage sarner who spends all his money as scon

as he has been paid and is broke until the next pay day.

In other words: when a group of cooperating sequential processes have
to be constructed and the overall behaviour of these processes combined
bas to satisfy more elaborate requirements —the community, formed by them,
has, as a wholes, to be well-behaved in some ssnse= we can only expect to
be able to do so, if the individual processes themsalves and the ways in
which they can interact will get more refinsd. We can na longer expect
a ready made sslution as the general semaphore tc do the job. In general,
we need the flexibility as can be expressed in a program for a general

purpase computer,

We now have the raw materisl, we can define the individual processes,
they can commuﬁicate with each other vie the common variables and finally
we have the synchronizing primitives. How we can compose from it what we
might want is, however, by no means obvious. We must ngw train ourselves to
use the tools, we must develop a style of pragramming, a styles of "parallel

programming® I might say.
In advaenee I should like to stress two points.

We shall be faced with a great amount of freedom. Interaction may
imply decisions bearing upon more than onz process and 1t is not always
abvious, which of the processes should do it. If we cannot find a guiding
priciple (e.g. efficiency considerations), therm we must have the courage

to impose some rule in the name af clarity,

Secondly, if we are interested in systems that really work, we should
be able to convince ourselves and anybody else who takes the trouble to

doubt, of the correctness of our constructions. In uniprogramming one is

EWD123 ~ 41

alresdy faced with the task of program verification -a task, the difficulty
of which is often underestimated— but there cne can hape to debug by testing
of the actual program. In our case the system will often have to work

under irreproducible circumstances and from field tests we can hardly expect
any serious help. The duty of verification should concern us right from the

start.

We shall asttack a more complicated example in the hope that this will

give us some of the experience which might be used as guiding principle.

5.1. An Example of a Priority Rule.

In section 4.3 we have used the generzl semaphore to couple a producer
and a consumer via a bounded buffer. The saolutien given there is extendable
to more producers and/or more consumers; it is applicable when the "portion®
is at the same time a convenient unit of information, i.e. when we can regard

the different portions as all beirng of the same size.

In the present problem we consider producers that offer portions of
different sizes; we assume the size of these portions to he expressed in
portions units. The consumers, again, will process the successive portions
from the buffer snd will, therefores, have to be able to process portions,
the size of which is not given a priori. A maximum portion size, however,

will be known.

The size of the portions is given in information.units, we assume also
that the maximum capacity of the buffer is giwven in information units: the
question whether the buffer will be ables to accomadate the rmext portion
will therefore depend on the size of the portion offered. The requiremenf,
that "adding a2 portion to" and "taking & portion from the buffer" are still
concelvable operations implies that the size of the buffer is not less

than the maximum portion size.

We have a bounded buffer and therefore a producer may have to wait

EWD123 - 42

before it can offer a portion. With fixed size portions this could anly
eccur when the buffer was full to the brim, now it can happen, hecause
free space in the buffer, although presemt, is insufficient for the nortion

concerned.

Furthermore, when we have more tham one producer and cpe of them is
waiting, then the other cnes may go on and reach the state that they wish
to offer & portionm. Such a portion from a next producer may alsa be too
large or it may be smaller and it may fit in the available free space of

the buffer.

Somewhat arbitrarily, we impose on our solution the requirement,
that the producer wishing to offer the larger portion gets priority over
the producer wishing to offer the smaller portion ta the buffer. (When
two or more producers are offering poriions that happen to be of the same

size, we just don't care.)

When a producer has to wait, because the buffer cennot accomodate
its portion, no other producers ecan therefore add their portions until
further notice: they cannat when the new portion is larger (for them it
will also not fit), they may not when the new portion is smaller, faor then

they have a lower pricrity and must leave the buffer for the earlier request,

Suppose &t a moment a completely filled buffer and thres producers,
waiting to offer portions of 1, 2 and 3 units respectively. When a consumer
now consumes a five—unit portiom, the priority rule implies that the pro=
ducers with the 2-unit portion and the Z-unit portion respectively will get
the opportunity to go on and not the one affering the 1-unit portion., It is
not meant tc imply, that then ths 3~unit portion will actually be offered

before the 2-unit porticon!

We shall now try to introduce so-called "stzstus variables" for the
different components of the system, with the aid of which we can characterize

the state of the system at any moment. Let us try.

EWD123 — 43

For each producer we introduce a variable named "desire"; this variable
will denote the number of buffer units needed for the portiom it could naot
add to the buffer. As this number is always positive, we can attach to
"desire = Q" the meaning, that noc request from this buffer is pending.
Furthermore we shall introduce for each producer a private binary "producer

semaphore™.

For the buffer we introduce the binary semaphore "bufman", which takes
care of the mutual exclusion of buffer manipulaticns in the widest sense
(i.a. not only the adding to and taking from the buffer, but alsc inspecticn

and modification of the status variables concerned.)

Next we need a mechanism to signal the presence of a next portion to
the consumers. As soon as a next portion is in the buffer, it can be cansumed
and as we do not care, which of the consumers takes it, we can hope, that
a general semaphare "number of gQueuing portione® will do the job. (Note,
that it counts portions guewing in the huffer and not number of filled

information units in the buffer.)

Freecaming buffer space must be signalled back to the producers, but
the possible consequences of free coming buffer space are more intricate and
we cannot expect that s general semephbore will be adeguate. Tentatively we
introduce an integer status variable "number of free buffer units". Note,

that this variable counts units and not portions.

Remark. The value of "number of free buffer units" will at most be
equal to the size of thes buffer diminished by the total size of the portions
counted in "number of queuing portians", but it may be less! I refer to the

program given in section 4.3%; there the sum
"number of queuing porticns + number of empty positicns"

is initially (and usually) = M, but it may be = N — %, because the F—operation
on one of the semaphcres always precedes the V-operation on the other. (Verify,
that in the program of section 4.3 the sum can even be = N = 2 and that this
value can even be lower, when we have more producers and/mr consumers.) Here

we may expect the same phenomenor: the semaphore "mumber of gueuing portions"

EWD123 ~ 44

will count the portions actually and completely filled and still unnoticad
by the consumers, "rmumber of free buffer umits" will count the completely
free, unallocated units in the buffer. But the units which have been reserved
for filling, which have been granted to a (waiting) producer, without already

being filled, will mot be counted in either af them.

Finally we introduce the integer "buffer blocking", the value of which
equals the number of quantities "desire"? that are positive. Obviously,
this variable is superfluous; it bas been imtroduced as a rescognition of ane
of our sarlier remarks, that as soon as one of the desires is positive, nao
further additions to the buffer cen be made, until further notice. At the
same time this variable may act as a warning to the consumers, that such

a "further notice" is wanted.

We now propose the following program, writter for N producers and M
consumers. ("N", "M", "Buffer size" and all that concerns the buffer is

assumed to be declared in the surroundings of this program.)

"begin integer array desire, producer semaphore [1 s N];

integer number of quewing pertions, number of free buffer units,
buffer blocking, bufman, loop;
for loop:= 1 step 1 until N do
begin desire[lonp]:: ; producer semaphore[loop]:: C end;
number of queuing portians;= O
number of free buffer units:= Buffer size;
buffer blocking:= 0; bufman:= 1;

parbegin
producer t: hegin.....cciieaiiaiiiiiiaa. .end;

LRI Y

producer n: begin integer portion size;
again n: produce next porticn and set portior size:
P(bufman);
Aif buffer blocking = O and
number af fres buffer units > portion size

then

EWD123 - 45

number of free buffer urits:=

number of free buffer units - portion size

begin

else
buffer blockin:= buffer blocking - 1;
desire{n J:= portion size; V{bufman);

P(producer semaphmre[nj); F(bufman} end;

add portion to buffer; V(bufman);

V{number of gueuing portions): goto again n

end;

-

producer N: begin.sssevesasianens.oend;

corsumer 1: BegiN..esssevsnaas...and:

.
-

consumer m: begin integer portion size, n, mex, nmax;

again m: P{number of queuing portions); P{bufman);

take portion fram buffer and set portion size;

rnumber of free buffer units:=

number of free buffer units + portion size;

test: if buffer blocking > 0 then

begin

2nd;

max ;= O;
for ni= 1 step 1 until N do
begin gfrma; <Zdesira{n} then
begin max:= d85ire{nJ; nmax:= n end end;
Af max < number of free buffer units then
begin number of free buffer units:=
number of free buffer units — max;
desire nmax Ji= O;
buffer blocking:= buffer blocking - 1;
V{producer semaphore[nmax]); goto test

end

V(bufman); process portion taken; goto again m

end;
=
.
.

consumer M: begin...iivisesesseaaa.end

parend

EwD123 - 46

In the outermost block the common variables sre declared and initialized;
I hope -~and trust that this part of the program presents no difficulties to

the reader that has followed me until here.

Let us first try ta understand the behaviour of the producer. When it
wishes to add a new portion to the buffer, there are essentially two cases:
either it can do so directly, or not. It can add directly under the combined

condition:
"ouffer blocking = Q and number of free buffer units > portion size“;

if so, it will decrease "number of free buffer units" and ~dynamically
speaking in the same critical section— it will add the portion to the buffer.
The twe follawing V-operations (the order of which is immaterial} clase the
critical section and signal the presence of the next portion to the combined

consumers. If it cannot ade directly, i.e. if {either)
"buffer blocking > O or number of free buffer units < gortion size"

(ar bath), then the producer decides ta wait, "o go to sleep", and delegstes
to the combined cansumers the task to wake it up again in due time. The fact
that it is waiting is coded by "desire[n]i> o", "buffer blocking" is increased
by 1 accordingly. After all clsrical operations on the common variables have
been carried out, the critical section is left = “V(bufman)“) and the
producer initiztss a P-operation on its privaté semaphore. When it has completed
this P-pperation, it reenters the critical section, merges dynamically with
the first case and adds the portion to the buffer. (See alsa the consumer in
the secand preogram of section 4.2, where we have already met the cutting

open of a criticsl section.) Note that in the case of waiting, the producer
has skipped the decrease of “rumber of free buffer units®. Note alsp, thet

the producer initiates the P-operation an its private semaphore at a moment,
that the latter may already be = 1, i.e. this F-operation, again, is only

a potential delay.

Let us now inspect, whether the combined consumers fulfill the tasks
delegated to them. The presence of a next portion is correctly signalled to
them via the general semaphore "number of gqueuing portions" and as the
P-operaticn on it occurs outside amy critical sectian, there is no danger

of consumers not initiating it. After this P-ocperation, the consumer enters

EWD123 - 47

1ts critical section, takes a portion and increases the number aof free
buffer units. If "buffer blocking = O" holds, the following compound statement
is skipped completely and the critical section is left immedistely; this is
correct, for "huffer blocking = O" mesans that none of the quantities "desire”
is positive, i.e. that none of the producers is waiting for the free space
just created in the buffer. If, however, it finds "buffer blocking > Q",
it knows that at least one of the producers has gone to sleep and it will
inspect, whether one or more producers 'ave to be weken up. It looks for
the maximum value of "desire™. If this is not too large, it decides, that
the corresponding producer has to go on. This decision has three effects:

the "number of free buffer units" is decreased by the number of units
desired. Thus we guarantee that the same free space in the buffer cannot be
granted to more than one producer., Furthermore this decrease is in accordance
with the producer behaviour.

"desire" of the producer in question is set to zero; this is correct,
for its request has now been granted; buffer blecking is decreased by 1
accordingly.

a V=gperatior on the producer semaphore concerned wakes the slseping

producer.

After that, conmtrol of the consumer returns to "test" to inspect,
whether more sleeping producers should be woken up. The inspection process
can end in one of two ways: either there are no sleeping producers anymore
{("huffer blocking = 0) or there are still sleeping processes, but the free
space is insufficient to accommodate the maximum desirs. The final value of
"buffer blocking" is correct in both cases. After the waking up af the

producers is done, the critical section is lsft.

EWD125 ~ 48

5.2. An Exazmple of Conversatiors.

In this section we shall discuss = more complicated example, in which
one af the cooperating processes is not a machine but a human being, the

"aperator™.

The operator is connected with the processes via a so-called "semi-duplex
channel" (say "telex connection"). It is called a duplex channel because it
conveys information in either direction: the operator can use a keyboard ta
type in a message for tbe processes, the processes can use the teleprinter
to type out A message for the operator. It is called a semi~duplex channel,

because it can anly transmit information in one direction at a time.

Let us now cansider the requirements to the total construction. (I admit,
that they are somewhat simplified. T hope, that they are sufficiently
camplicated to pose to us a real problem, yet sufficiently simple as not
ta drown the basic pattern of our salution in a host of inessentiel

details. The trees should not prevent us from seeing the forest!)

We have N identical processes (numbered from 1 through N} and essentially
they can ask a single guestian, called "Qi", meaning "How shall 1 go on?", to
which the operator may give one of two possible answers, callsd "A1"™ and "AZ".
We assume, that the vperator must know, which of the processes is asking the
guestion —as his answer might depend on this knowledge= and we therefore
specify, that the i—th process identifies itself when posing the guestion;
we indicate this by saying that it transmits the guestion "Q1(i)". In a sense
this is & consequence of the fact, that all M processes use the same commu~

nication channel.

A nezxt consequence of this channel sharing between the different processes
is that no two processes cam ask their guestion simultaneously: behind the
scenes some form of mutual exclusion must see to this. If only Q1-guestions
ars mutually exclusive, the operator may meet the following situation: a
question —say "Q1(3)}- is posed, but before he has decided how to answer it,
= next guestion -say"Q1{7)"~ is put to him. Then the single answer "AlY" is
no longer sufficiermt, because now it is no longer clear, whether this answer

is intended for "process 7" or for "process 3". This could be avercome by

EWD123 ~ 49

adding to the answers the identification of the process concerned, say,

"A1(i)" and MA2{Q)" with the appropriate value of i.

But this is only cne way of doing it: an alternative solution is to
make the guestion, followed by its answer, together 2 critical occuyrence:
it relieves the operator from the task to identify the process and we
therefore select the latter arrangement. S0 we stick to the answers "A1Y and
"A2T, We have two kinds of conversations "Q1{i), MM and "Q1(1), A2" and the
next conversation can only be initiated whsn the previous one has been

completed.
We shall now complicate the requirements threefold.

Firstly, the individual processes may wish to use the communicatign
channel for single-shot messages *"M(i)" say— which do rot require any

answer from the operator.

Secondly, we wish to give the operator the possibility to postpone an
answer. Of course, he can do so by just not answering, but this would have
the undesirable effect,that the communication channel remains blocked far
the other N - 1 processes. We introduce a next answer "A3", meaning: "The
channel becomes free again, but the conversation with the process concerned
remains unfinished.” Obviously, the operator must have the opportumity to
reopen the conversation again. He can do so via "A4(i)" or "A5(i)", where
"i" runs from 1 through N and identifies the process concerned, where "A4"
indicates that the process should continue in the same way as after "Al",
while "AS" prescribes the reaction as to "A2". Possible forms of conversatian
are now:

a) v@1{i), M

b) mQ1(i), A2v

c) "O1(d), A3 - - - mAq(i)w

d} *Q1(i), A3" - = - mAg(i)n

As far as process i is concerned a) is equivalent with c) and b) is equivalent

with d}.

The second requirement has a profound influerce: without it —i.e. only

EWD!23 ~ 50

"A1" and "A2" permissible answers— the process of incoming message interpre—
tation can always be subordinate to one of the N processes, viz. the one,

that has put the question: this can wait for an answer and can act accordingly.
We do not know beforehand, however, when the message "A4(i)" or BA5{i)" comes
and we cannot delegate the interpretation of it fo the i-th process, because
the discovery that this incoming message is concerned with the i~th process

is part of the message inmterpretation itself!

Thirdly, Ad~ and AS5-messages must bave priority over {1- and M-messages,
i.e. while the communication channel is occupied (in a O1- or M-message),
processes might reach the state, that they want to use the channel, but also
the operator might come to this conclusian. As sopon as the channel becomes
available, we wish, that the operator can wse it and that it won't be sratchea
away by ane of the processes. This implies that the operator has a means to
express this desire —a rudimentary faorm aof input— even if the channel

itself is engaged in output.

We assume that

a) the operator can give externally a
wy({incoming message)",

which he can use to announce a message (A1, A2, A3, A4, or A5)
b} can detect by the machires reaction, whether the message is accepted or

ignored,

Remark. The situation is not unlike the school teacher shouting "Now
children, listen!"., If this is regarded as a normal message, it is nanéensical:
either the children are listening and it is therefore superfluous, or they are
not listening, and therefore they do not hear it. It is, in fact a kind of
"meta~message", which only tells, that a rnormal message is coming and which

should also pemetrate if the children are nat listening (talking, for imstance).

This pricrity rule may make the communicatiom channel reserved for an
announced A4 ~ or A5 message. By the time that the operator gets the opportunity
to give it, the gituation or his mood may have changed, and therefore we extend

the list of answers with "A6"™ ~the dummy opening~ which enables the operator

EwD12% - 5i

to withhold, upon further consideration, the A4 or A5,

A final feature of the message interpreter is the applicability test.
The operator is a human being and we may be sure that he will make mistakes,
The states of the message interpreter are such that at any moment, not all
incoming messages are applicable; when a message has been rejected as non~
applicable, the interpreter should return to such a state that the operator

can now give the correct version.

Our attack will be a2long the following lines:
1) Besides the N processes we introduce ancther process, called "message
interpreter"; this is dome hecause it is difficult to make the interpretation
of the messages "A4"™, "AS" and "“AE" subordinaste to one of the N processes.
2) Interpretation of a message always implies, besides the message itself,
a state of the interpreter.(In the trivial cese this is a constant state,
viz. the willingness to understand the message.) We have seen that not all
incoming messages are always acceptable, so our messags interprzter will he
in different states. We shall code them via the {common) state variable
"comvar". The private semaphore, which can delay the actior of the messags
interpreter, is the semaphore "incoming message", already mentioned.
3) For the N pracesses we shall iniraduce an array "procsem” of private
semaphores and an array "procvar" of state variables, through which the
the different processes can communicate with eachk other, with the message
interpreter and vice versa.
4) Firally we introduce a8 single binary semaphare "mutex" which caters
for the mutual exclusion during inspection and/nr modification of the
cammon variables.
5) We shall use the binary semaphore "mutex" only for the purpose just
described and never, say, will "mutex = O" be used to code, that the channel
is occupied. Such a converntion would be 2 dead alley inm the sense that the
technique used would fall into pieces as saon as the N processes would have
twa charnels (and two Dperatars) at their disposal. We aim to make the
critical seciians, gaverned hy "mutex" rather short and we won't shed a tear

if some criticasl section is shorter than necessary.

wWell, the above five points, articles of faith, I might say, are of some
help and I hope that in wview of our previous experiences they seem a set of

reasonable principles. I do one part of my job if I present a solution along

EwD123 - 52

the lines just given and show that it is correct. I would do 2 better job
if I could show as well, how such a solution is found. Admittedly by trial
and error, but even so, we could try to make the then prevailing guiding
priciple (in mathematics wsually called "The feeling of tke genius")
somewhat more explicit. For we are still faced with problems:

a) what structure should we give to the N + 1 processes?

b) what states should we introduce (i.e. how many possible values shauld

the state variables have and what should be their meaniﬁgs)?

The problem (bath in constructing and in preserting the sclutiom) is,
that the twe points just mentiored are interdependent. For the values of
the state variables have only an unambiguous, describable meaning, when
"mutex = 1" holds, i.e. none of the processes is inside a critical sectian,
in which they are subject to change. In other words: the conditions under
which thke meaning of ite state variskle valizs should be aprlicable is
only known, when the programs are finished, but we can only make the programs
if we kmow what inspections of and operations on the stete variables are
tc be performed. In my experience one starts with a rough picture of both
programs and state variables, one tken starts to enumerate the different
states and then tries to build the programs. Them two ¢ifferent things
may happen: either one finds that one has irtroduced toe many states or
ane finds that —having overlooked a need for cutting a critical sectian
into psrts— ome has not introduced enough of them. One modifies the states
and then the program and with luck and care the design process converges.
Usually I found myself content with a workimg solution and I did not bather

to minimize the number of states introduced.

In my experience it is easier ta concsive first the states (being
statically interpretable} and then the programs. In conceiving the states

we have to besr three points in mind.

a) S5tate variables should have & meaning when mutex is = Q; on the other
hand 2 process must leave the critical section before it starts to wait for
a privaete semaphore. We must be very keer on all those points where a process
may have to wait for something more complicated than permission to complete

“P(mutex)“,

EWD123 - 53

b) The combinad state variahles specify the total state of the system,
Nevertheless it helps a great deal if we can regard some state variable as
"belonging to that and that process". If some aspect of the total state
increases linearly with N, it is easier to conceive that part as egually

divided among the N processes,

c) If a process decides to wait on account of & certain (partial) state,
each process, that makes the system leave this partial state should inspect
whether on account af this change, same waiting process should go on. (This

is only a generalization of the principle, already illustrated in The Sieeping

Barher.)

The first two points are mainly helpful in the concepticn of the different

states, the last ome is an aid, to make the programs correct.

Let us mow try to find a set of appropriate states. We starts with the

element “procvar[i]", describing the state of process i.

procvarii] = O
This we call "the homing position”, It will indicate that none of the
following situatiorns applies, that process 1 does not require any special

service from either the message interpreter or cne of the ather praocesses.

procvar[i] = 1

"On account of non—availability of the communication channel, process
i has decided to wait on its private semaphore.® This decision can be taken
independently in each process, it is therefore reasansble to represent it
in the state of the process. Up till row there is no obvious reason to
distinguish between waiting upon availability for a M-message and for a

M ~question, so let us try to do it without this distinction.

procvar[i] = 2

"Question "Q1(i)" has been answered by "A3", viz. with respect to
process i the operator has postponed his final decision." The fact of the
postponement must be represented because it caen hold for an undefinitely

lang period of time (observaticn a); it should he regarded as a state variable

EWD12% = 52

of the process in guestien as it can hold in N-fald (observation b). Simul-
tanegusly, "procvar[i] = 2" will act as applicability criterion for the

operator messages “A4[i]" and "ASEi]“.

procuar[i] =3

""Q1[i]" has been answered by "A1" or by "A%"- - ~ "A4[ij"."

procvar[i] =4

""Q?[i]" has been answeresd by "A2" ar by "A3"- - - “AS[i]","

First of all we remark, that it is of no concern to the individual
process, whether the operator has postponed his final answer or not. The
reader may wonder, however, that the answer given is coded in "procvar", while
cnly one answer is given at a time., The reason is that we do not know how
‘long it will take the individual process to react to this answer: before it
has dore so, a next process may have received its final answer to the Q1-

question.

Let us mow iry to list the possible states of the communication
organisation. We introduce & single variasble, called "comvar" to distinguish
between these states. We have to bear in mind three different aspects
1) availability of the communicetion possibility for M~messages, Q1-questions
and the spontaneous message of the operatcr,

2} acceptability —more gemeral: interpretability- of the incoming messages.
3) pperator priority for incoming messages.
In arder not to complicate matters immediately too much, we shall start

by ignoring the third point. Without operator priority we can see the

following states.

comvar = 0

"The communicatien facility is idle™, i.e. equally available for both
processes and operator. For the processes "comvar = O means that the commu-
nication facility is availsble, far the message interpreter it means that

an incoming message need not be ignored, but must be of type A4, AD or A6.

comvar = 1

"The communication facility is used for a M-message or a Qf—question™.

EWD12% ~ 55

In this period of time the value of "comvar" must be £ Q, because the
communication facility is not available for the processes; for the message

interprater it means, that incoming messages have to be ignored.

comvar = 2

"The communication facility is reserved for an A1-,A2- or A3-~answer."
When the M~message has been finishsd, the communication facility becomes
available again, after s Ql-question, however, it must remain reserved. During
this period, characterized by "comvar = 2", the message interpreter must
know to which process the operataor answer applies. At the end of the answer,

the commupication facility becomes again available.

Let us now take the third requirement into consideration. This will lead

to & duplication of (certain) states. When "comvar = QM holds, an incaming
message is sccepted, when "comvar = 1Y, an incoming message must be ignored.
This occurence must be noted down, because at the end of this occupation

of the communication facility, the operator must get his pricrity. We can

introduce a new staie:

camvar = 3%

"As Mcomvar = 1" with aperator priority requested.”

When the tramsition tc "comvar = 3" occurred during a M-message, the
operator could get his opportunity immediately at the end af it; if, however,
the transition to "comvar = 3" took place during a (l-question, the priority
can only be given to the operator after the answer to the Ol1-guestion. Thersfore,

also state 2 is duplicated:

comy3ar = 4

"As "comvar = 2", with operator priority requested."

Finally we have the state:

comvar = 5
"The communication facility is reserved for, or used vupon instigation of
the operatar.” For the processes this means non—availability, for the message

interpreter the acceptability of the ipcoming messages of type A4, A% and A6.

EWD123 - 56

Usually, these messages will be announced to the message interpreter while
"comvar" is = 0. If we do not wish that the entire collection and interpre—
tation of these messages is done within the same critical section, the message
interpreter canm brezk it aper.It is then necessary, that "comvar" is % 0. e
may try to use the same value 5 for this purpuse: for the processes it just
means non—availability, while the control of the message interpreter knows
very well, whether it is waitimg for a2 spontaneous operator message (i.e.
"reserved for..") or interpreting such @ message (i.e. "used upon instigation

of..“).

Before starting to try to make the program, we must hear im mind point
c: remembering that availability of the communication facility is the great
{ang only) bottleneck, we must see to it, that every process that ends a
communication facility oecupation decides upon its future usage. This is
in the processes at the end of the M-message {and not so much at the end of
the Q1-question, for then the communication facility remsinms reserved for
the answer) and in the message interpretier at the end of each message inter—

pretation,

The proof of the pudding is the eating, let us try, whether we can
make the program. (In the program, the sequence of characters starting
with "commeni" and up to and including the first semicalen are inserted
for explanatory purpases only, In ALGOL 60, such a comment is only admitted
only immedistely after "begin" but I do not promise, to respect this
{superflucus) restriction. The following program should be interpreted to
be embedded in a universe in which the operator, the communication facility

and the semaphore "incoming message" -initially = O~ are defined.

begin integer mutex, comvar, asknum, loop;
comment The integer "asknum" is a state variable of the message
interpreter, primerily during interpretation of the answers A1, A2
and A3. It is a common varisble, as its value is set by the asking
Process. ;

. integer array procvar, procsem [1 : NJ;

EWD123 - 57

for loop:= 1 step 1 until N do
begin procvar[lmop]:: 03 PIGCSEW{lDDp]:: 0 end;

comvar:= {; mutex:= 1;

parbegin
process 1: bBEgin..cieveiaeiinirenna, end;

rocess n: begin integer i; comment The imteger "i" is a local variable
P [}

very mych like "losp".;

M message:P(mutex);

if comvar = 0 then

begin comment When the communication facility is available,
it is taken.;
comvars= 1; V(mutex) end

begin comment Otherwise the process books itself as slesping
and goes to sleep.;
prccvar{ﬁ]:= 15 V(mutex); P(pro:sam[m]}
camment At the completion of this P-operation,
"procsem[n]" will again be = Q, but comvar =-still
untouched by this process— will be =1 or =3.; end;

send M message;

comment Now the process has to analyse, whether the operator

(first!} or one of the other processes should get the commu-~

nication facility or not.; P(mutex);

if comvar = 3 then comvar:=

else

begin camment Otherwise "comvar = 1" will hold and process n
kas to look whether ane of the cther processes is waiting.
Note that "procvar[n] = Q" halds.;

for i:= 1 step 1 wntil N do

begin if prucvar[i] = 1 then
begin pracvar[if:= O; V(prncaem[i]}; goto ready
end

end;
comvar:= 0
end

ready: V(mutex);

EWD123 - 38

1 Question: P(mutex);
Aif comvar = O then
begin camvar:= 1; V(mutex) end
Else
begin prncvar{m]:: 15 V(mutex); P(procsem[n]) end;
camment This entry is identicsl ta thet of the M message.
Mote that we are out of the critical section, nevertheless
this process will sst "agsknum". It can do so safely, for na
= other proeess, nor the message interpreter, will access
Hasknum" as long as "comvar = 1" holds.;
asknum:= n; send gquestian Q1(n);
P(mutex);
comment "camvar" will be = 1 gr = 3.;
if comvar = 1 then comvari= 2 else comvar:i= 4;
V(mutex); P(prucsem[n]);
camment After completion of this P-operation, procvar[n]
will be = 3 or = 4. This process can now inspect and reset
its procvar, although we are outside a critical sectieon.;
if pracvar[n] = 3 then Reaction ! else Reaction 2;
procvar|n ;= 0;

comment This last assignment is superfluous.;

-
.
.

end;

process N: Eggig...............;....Eﬂg;
message interpreter:
begin integer i;
wait: P{incoming message); -
P(mutex);
if comvar =1 EEEE COMVari= 33
if comvar = 3 then
begin comment The message interpreter ignores the incoming
message, but in due time the operator will get the
opportunity.;

V({mutex); goto wait end;

EWD23 - 59

Aif comvar = 2 or comvar = 4 then
begin comment Only At, A2 and A% are admissible. The inter—
pretation of the message need not be dome inside a
critical section;
V(mutex);
interpretation of the message coming in;
if message = Al then
begin procvar[asknum}:: 3; V(procaem[asknum]};
gote after correct answer end;
1f message = A2 then
begin procvar{:sknum]:: 4; V(prncsem[asknum]);
goto after correct snswer end;
if message = A3 then
begin prucvariasknum}:: 2; goto after correct answer end;
comment The operator has given an erroneous answer
and should repeat the message; gotg wait;
after correct answer: P(mutex);
if comvar = 4 then
begin commant The operator should now get his opportunity;
comvar:= 5; V{mutex); goto wait end;
perhaps comvar to zera:for i:= 1 step 1 until N do
begin if prucvar[i] = 1 then
begin procvar] i i= 0; comvar:= 1;
V(protsem[i]); goto ready end
End;
comvar:= O;
ready: V(mutex); goto wait
end;
comment The cases "camvar = Q" and "comvar = 5" remain.
Messages A4, A5 and A6 are admissible.;
Aif comvar = O.EEEE caomvar:= 5;
comment See Remark ! after the program.;
V(mutex);

interpretation of the message coming ing

EWD12%3 ~ @0

P(mutex);
if message = A4 process number] then
begin i:= "process number given in the message";
if procvar[i] = 2 then
begin procvar[i]:: H V(procsem[i]);
goto perhaps comvar to zerc end;
comment Otherwise process not waiting for postponed
answer.; goto wrong message
end;
if message = ABEprocess number] then
begin i:= "process number given in the message";
if prucuar[i} = 2 then
begin procvar[ij:z 4; V(procsem[i});
goto perhaps comvar te zero end;
comment Otherwise process not waiting for postponaed
8nswer.; goig wrong message
&nd;
if message = AG then goto perhaps comvar to zero;
WIrong message: comment"comvar = 5" holds, giving priority to the sperator
to repeat his message.;
V(mutsx); goto wait

end

parerd _

Remark 1. If the operator, while "comvar = Q" or "comvar = 5"
criginally holds, gives am uninterpretable (or inappropriate) message, the

communication facility will remain reserved for his next trial.

Remark 2. The final interpretation of the A4 and A5 messages is
done within the critical section, as their admissibility depends on the state
af the process concerned. If we have only one communication channel and one

vperator, this precaution is rather superfluaous.

EWD123 - &*

Remark 3. The for-loops in the program scan the Drocesses in
order, starting by process !': by scanning them cyclically, starting at an
arbitrary process (selected by means of a {pssudo} random number generator)

we could have made the solution more symmetricai in the N processes.

Remark 4. In this section we have first given a rather thorough
expioration of the possible states and then the progrem. The reader might
te interested to know that this is the true picture -"a life recording™-
of the birth of this soluticn, When I started to write this section, the
problem posed was for me as new as for the reader: the program given is
my first versiaon, constructed on accournt of the considerations and
explorations given. [hope that this section may thus give a hint as how

one may find such solutions.

5.2.1. Improvements of the Previous Program,

In sectian 5.2 we have givern a first version of the program; this
version has been included in the text, not because we are content with it,
but because its inclusion completes the picture of the birth of a solution.
Let us now try tc embellish, in the nameg of greater cornciseness, clarity and,
may be, efficiency. Let us try to discover in what regpects we have made a

mess of it.

Let us compare the information flows from a process to the message
interpreter and vice versa. In the one direction we have the common variable
"asknum" to tell the message interpreter, which process is asking the
guestion. The setting and the inspection of "asknum" can safely take place
cutside the critical sections, governed by "mutex", because at any moment
at most one of the N + 1 processes will try to access Masknum™. In the inverse
information flow, where the message interpreter has to sigrnal back to the
i—th process the nature of the final operator answer, this answer is coded
in "procvar". This is mixing things up, as is shown

a) by the "procvar®inspection (whether procvar is = 3 ar = 4), which is

EWD123 = 62

suddenly allowed to take place outside a critical sectien

B) by the superfluity of its keing reset to zero.

The suggestion is to introduce a new
"integer array Dparanswer[?:N]"
the elements of which will be used in a similar fashion as "asknum®. (An
attractive consequerce is that the number of possible values of "nrocvar"
—the more fundamental quantity(see below)— does not increase any more, if

the number of possihle answers to the question Q1 is increased.)

I should like to investigats wheiher we can achieve a greater clarity
by separating the common variables into two (or perhaps more?) distinct
groups, in order to reflect an observahle hierarchy in the way in which they

are used. Let us try to order them in terms of "basicness".

The semaphore "incoming messags" seems at first sight a fairly basic
one, being definmed by the surrounding universe. This is, however, an illusion:
within the parallel compound we should have programmed (as N + 2nd process)
the operator himgelf, and the semaphore "incoming message" is the private
semaphore for the message interpreter just as "procsem[i]" is for the i-th

process.)

Thus the most basic gquantity is the semaphors "mutex” taking care of the

mutual exclusiom of the critical sections.

Ther come the state variables "comvar and "procvar™ which are inspected

and can be modified within the critical sections.

The guantities just mentioned share the property that their values
must be set befure entering the parallel compound. This property is also
shared by the semaphores "procsem" (and "incoming message", see ahave), if
we stick to the rules that parallel statements will access common “semaphores

via P~ and V-operations exclusively,

(Withuut this restriction, regquest for the communicatinn facility

by process n could start with:

w123 ~ 63

"E(mutex) ;

if comvar = O then

begin comvar:= 1; V({mutex) end

begin procvar|n]:= 1; proesem(n |:= O
V(mutex); F(procsem[n]) end" .

We reject this soluticn on the further observation, that the assignment
"procsem{n]" is void, except for the first time that it is executed; the
initialization of procsem's cutside the parallel compound seems thersfore

apprapriate).

For the common variahles, listed thus far I should likes to reserve the
name "status variables", to distinguish them from the remaining ones,

"asknum™ and "operanswer", which I should like to call "transmission variables™.

I call the latter "transmission variables" because, whenever one of
the processes assigns a value to such a variable, the information just stored
is destinated for a well known "receiving party". They are used to transmit

information between well-known parties.

Let us now turn our attention from the comman variables towards the
programs. Within the programs we have learnt to distinguish the so-~called
"ecritical sections™, for which the semaphore "mutex" caters for the mutual
exclusion, Besides these, we can distinguish regions, in which relevant

actions occur, such as:

in the i-th process:
Region 1: gending an M-measage
Region 2: sending a Q1 (i)~question

Region 3: reacting to operanswer[i] (this region is somewhat open=ended)

and in the message interpreter:

Region 4: ignoring incoming messages
Region 5: expecting Al, A2 or A3
Region 6: expecting A4(i), AG(i) or A6

EwWD123 - 64

We come now to the following picture. In the programs we have critical
sections, mutually excluded by the semaphore "mutex™". The purpose of the
critical sections is to rescolve any ambiguity inm the inspection and modification
of the remaining state variables, inspection and modification perfarmed for
the purpose of mere intricate “sequencing patterns® of the regions, seguencing
patterns, that make the unambiguous use of the transmission variables possihle.
{(If one process has to transmit information to another, it can now do sa
via a tramsmission variable, provided that the execution of the assigning
region is always followed by that of the ingpecting region before that af the

next assigning region!)

In the embellisbed version of the program we shall stick to the rule
that the true state varisbles will only be accessed 1in critical sections
{if they are not semaphores) cr via P- and V-operstions (if they are sema-
phares),_while the tramsmission variables will only be accessed in the
regiors. {In more cnmplicafed examples this rule might prove iso rigid and
duplication might be avoided by allowing transmission varisbles at least
to be inspected within the critical section. In this example, however,

we shall stick to it.)
The remeining program improvements are less fundamental,

Coding gose more smoothly if we represent the fact of reguested
operator priority not in additional values of "comvar® but in an additional
two~valued state variable:

"Boolean operator priority"
{Quantities of type "Bmalean" can take on the two values denctsd by "true"
and "false" respectively, viz. the same domain as "conditians" such as we

have met in the if—clause.)

Furthermore we shall introduce two procedures; they are declared
outside the compound and therefore st the disposal of the different

constituents of the parallesl compound.

We shall first give 2 short description of the new meanings of the

values:. aof the state variables "procvar" and "comvar':

EwD123 - 63

procvar[i] = 0 homing position

prncvar[i] =1 walting for availzbility of the communication facility
for M or Q1(i)

prucvar[i] =2 waiting for the answer "A4(i)" or va5(i)".

comvar = O homing position {communication facility free)

comvar = 1 communication facility for M or Q1

camvar = 2 communicatiaon facility for Al, A2 or A3

comvar = 3 communication facility for A4, A5 or A6,

We give the program withgut comments and shall do it in two stages:
first the program outside the parallel compound and then the constituerts

of the parallel compound.

begin integer mutex, comvar, asknum, loop;
Boolean operator priority;

integer array procvar, procsem, Dperanswer[1:N];

procedure M or Q entry(u); value u; integer uj
begin P(mutex);
if comvar = 0 then
begin comvar:= 1; V{mutex) end
else
begin procvar[u}:: 1; V(mutex); P(prncsem{u])‘ggg
End;
procedure select new comvar value;
begin integer i;
if operator priority then
begin operator priority:= false; comvari= 3 end
else
begin for i:= 1 step 1 until N go
begin if procuar[i] =1 then
begin prncuar[i]:: 0; comvar:= 1;
V(procsem[i}); goto ready end

end;

comvar:= O;
ready: end

end;

EWD12% - ob

for loop:= 1 step ! until N do
begin procvar[luup]:: s procsem[loop]:: 0 end;
comvari= Q; mutex:= 1; operator priority:= false;

parbegin
process 1: Begin...c.ieeiiinneeeae.Bnd;

80 4

process N: begineeieiianeieesnnns,end;

message interpreter:

begin.ieeesceersnnaenaaa.end
parend

end

Here the n—th process will he of the farm

process n: hagin

LR S

M message: M or Q entry(n);
Region 1: send M message;

P(mutex); select new comvar valus; V(mutex);
Q1 question:M ;r Q entry(n);
Region 2: asknumi= n;

send Q1{n);

P(mutex); comvari= 2; V(mutex}; P(prucsam[m]};
Region 3: if operanswer[n] = 1 then Reaction 1

else Reaction 2:

When the message interpreter decides to esnter Region 6 it copies, before
doing so, the array "procvar": if an answer A4{i) should bs acceptable,
then "procvar[i] = 2" should already hold at the moment of annourcement of

the answer.

EwD123 - €7

message interpreter:

begin integsr i; integer array pvcopy[?:N};

wait: P(incumiﬁg message }; P{mutex);
if comvar = 1 then

Region 4: begin operator priority:= true;
leave: V(mutex); goto wait end;
Af comvar # 2 then goto Region &;
Regien 5: V(mutex); collect message;
if message # A1 and message # A2 and message # A3 then goto wait;

1= asknum;

if message = Al then Gperanswer[i}:: 1 else
i:]:: 23

i

if message = AZ then Dperanswer{
P(mutex);
if message = A3 then procvar{i]:: 2 else
signal to i: V(prmcsem[ij);
preleave: select new comvar value; goto leave;
Regicn 6: Aif comvar = O then comvari= 3%;
for i:= 1 step 1 until N do pvcopyl i Ji= proevarfi];
V{mutex); collect message;
if message = A6 then begin P(mutex) ; gota preleave end;
if messags # Ad(prncess numbar) and message # AS(process number) then
goto wait;
i:= "process number given irn the message™;
if pvcapy{i] £ 2 then goto wait;
operanswer[i]:z if message = A4 then 1 else 2;
P{mutex); procvar|i]:= O; goto signal to i

end

As an exercise we leave to the resader the version, where pending requests
for 1-guestions have priaority over thoss for M-messages. As a next extension
we suggest a two console configuration with the additicnal restriction that
an A4- or Ab-message is only acceptable via the censole over which the conver—
sation has bszen initiated. {Otherwise we have to exclude simultansous, contra—
dicting messages "A4{i)" and "A5(i)" via the two different consoles. The solution

without this restriction is left for the really fascinated reader.)

EWD123 - 68

5.2.2. Proving the Correctness.

In this section title I have used the word "proving" in an informal way.
I have not defined what formal conditions must be satisfied by a "legal
proof™ and I do not intend to da so. When I can find & way to discuss the
program of section 5.2.1, by which I can convince myself —and hopefully
anyhody else that takes the trouble to doubt!- of the correctness of the

overall performance of this aggregate of processes, I am content.

In the following "state picture" we make a disgram of al the states in
which a process may find itself "for any length of time", i.e. autside
sections, critical to mutex. In arrows we describe the transitions taking
place within the critical sections; accompanying these arrows, we give the
modifications of comvar or the conditions, under which the transition

from one state to another is made.

Calling the neutral region of a process before entry into a Region 1

or Region 2: "Region O", we can give the state picture

Region O

procvar = {

comvar 0 — 1 comvar £ O

procvar = 1

comvar — 1

Region 1 or 2

procvar = 0

Leaving Region 1 can be pictured as:

Region 1, procver = O

comvar 1 — 3 1 —1 t—0
operator procvar all procvar %)
priority t =0

I
[&]

Region 0, procvar

EWD122 - &9

Leaving Region 2, with the possibility of a delayed answer, can be pictured

as;
Region 2, procvar = O 1
I
J,1 ~2
waiting for answer, procvar =
At, A2 AS
comvar 2 =3, 1, O comver 2 =3, 1, 0

‘ waiting for answer, procvar = 2

' comvar 0,3 — 0,1

l Ad, A5

N Region 3, procvar = O ’

Reactian to the answer '

y

Region Q, procvar = 0 l

We can try to do the same for the message interpreter. Here we indicate
alang the arrows the reslevant occurrences, such as changes of a prmcvar
and the kinc of message. We use "WIM" as abreviation for "Waiting for

Ingoming Message”.

Ew 23 - 70

procvar 1 = Q

Region C -

WIM
comvar = 1
no prinrity

1, 2

Regiogn O —

all procvar % 1

Region 1, 2

WIM
comvar = 0

na priority

T
Imessage

Region 1 — message rejected
Region O
1
WIM
comvar = 1
priority
. . L1Region 1 —
end of Region 2 znd of Re n 2
J 918 Region O
WIM WIm
comvar = 2 comvar = 2
no priority prierity
messlage A mesisage
Y
Regian 5 Region 5
comvar = 2 comvar = 2
no priority priority
L.]
A, AZ, AR wrong Al, wrong
Region 2 — message A2, message
2, 3 A3. \L |
N
WIM
camvar = 3
no priority
message .
: [
Region 6
comvar = 3
no priority
wrong
message

A4, AS (Region 2 — 3, procvsr 2 — o)

or A6

EwDizs - T

These schemes, of course, teach us nothing new, but they may be a

powerful aid ir the program imspectian.

We verify first, that "comvar = O" represents indeed the homing
positien of the communication facility, i.e, available for either entrance
into Regior ! ar Region 2 (by cne of the processes) or entrance into
Region 6 (by the message interpreter, as result of an incoming message

for which it is waiting).

If comvar = O and one of the processes wants to enter Region 1 or
Region 2, or a message comes from the operator, Region 1, 2 or 6 is entered;
furthermore this entrance is accompanied by sither "comvari= 1" or "comvar:= 3"
and in this way care is taken of the mutual axclusion of the Regiorms 1, 2

and 6.

The mutual exclusion implies that processes may fail to enter Regiaon
1 or 2 immedistely, or that an incoming message must be rejscted, coming
at an inacceptable moment. In the first case, the process sets "procvar:= 17,
in the second case (in Region 4) the message interpreter sets "operator

priority:= true".

These assignments are anly performed under the condition "comvar # or;
furthermore the assignment "eomvar:= O" —anly occurring in the procedure
"select new comvar valus"- is only performed provided "nan operator priority
and all procvar % 1", From these two observations and the initial values,

we can conclude:

"comvar = O" excludes "operator priority" as well as the occurrence of one

or more M"procvar = 1",

As all ends of accupation of the communication facility (i.E. the
end of Region 1, 5 and 6) call "select new comvar value" we have established
a) that entrance into the Region 1, 2 and & is only delayed when necessary

b) that such & d=lay is guarantzed to be resslved at the earliest opportunity.

The structure of the message interpreter shows clearly that

Ewn123 - 72

a) it can exscute Region 5 omly if “comvar = 2"
b) it can only sxecute Region 5 if “comvar = 2"

C) execution of Region § is the only way to mske comvar again # 2.

The only assignment "comvar:= 2" occurs at the end of Region 2. As
a result each Region 2 can cnly be followed by a Region 5 and, conversely,
each Region 5 must be preceded by a Region 2. This seguencing allows us
to use the transmission variable "asknum", which is set in Region 2 and

inspected in Region 5.

For the uses of the transmission variables "operanswer" an anzlogous
analysis can be made. Region 2 will be followed by Region 5 (see above);
if here the final answer (A? or A2) is interpreted, Uperanswer[i} is set
before “V{prOCSEm[i})", so that the transmission variable has been set
praperly before the process can (and will} enter Region 3, where its
"ogperanswer" will be inspected. If in Region 5 thke answer A% is detected,
the message interpreter set for this process "procvar[i]:: 2", thus allowing
once in Region & the answer A4 or A5 for this process. Again ”V(prucsem[i])”
is only performed after the assignment to operanswer. Thus we have verified
that
a) operanswer is only set once by the message interpreter after a request
in Region 2,
b) this operanmswer will only be inspected in the following Region 3 after
the request to set it has beem fulfilled (in Region 5 or Region 6).

This completes the soundness of the use of the transmission variables

"operanswer".

Inspection of the message interpreter (particularly the scheme of its
states) shows
a) that a rzjected message (Regiun 4) sooner or later is bound to give
rise to Region 6
B that wIong messages are ighored, giving the operator the opportunity

to correct.

By the above analysis we hope to have created sufficient confidence

EWD123 - 73

in the correctness of our construction. The amalysis followed the steps

already hinted at in section 5.2.1: after creaticn of the critical sections
(with the aid of mutex}, the latter are used to sequence Regions properly,

thanks to which sequencing the transmission variables can be used unambiguously.,

6. The Problem aof the Deadly Emhrace.

In the imtroductory part of this section I shall draw attention o a
rather logical problem that arises in the cooparatisn between various
processes, when they have to share the same facilities. We have selected
this problem for various reasons., Firstly it is a straightforward extension
of the sound principle that ro two persocns can use a single compartment of
& revolving door simyltanecusly. Seondly, its solution, which I regard as
ron—~trivial and that will be given in section 6.1, gives us a nice example
of more subtle cooperatien rules than we have met before., Thirdly. it gives
us the opportunity to illustrate (in secticn 6.2) a programming technique

by which a further gain in clarity can be achieved.
Let me first give an example of tha kind of sharing I have in mind.

As "processes" we might take "programs", describing some computational
process to be performed by a computer. Execution of such a computaticnal
process takes time, during which information must be stored in the computer,
We restrict ourselves to thoses processes of which is known ir advance
1) the maximum demand on storage space and
2) that the computational process will end, provided that storage space
requested by the process will be put at the disposal of the computational
process. The ending of the computational process will imply that its demand

on storage space will reduce to zero,

We assume that the available store has been subdivided into fixed size
"pages" which, from the point of view of the programs can be regarded as

equivalent.

The actual demand on storage space, needed by a process, may be a function

EwD123 - 74

varying in time as the process proceeds -subject, of course, to the a priori
known upper bound. We assume that the individual processes reguest from

and return to "avasilable store" in single page units. With "equivalence"
{s=e the last word of the previous paragraph) is meant that a process,
requiring a new page only asks for "a new page" but never for a special one

or one out of a special group.

We now reguest that a process, once initiated, will get the opportunity
—~sooner ar later— to complete its action and reject any organization in
which it may happen that a process may have to be killed half way its
activity, thersby throwing away the computation time already invested in

it.

If the computer has to perform the different processes ane after the
other, the only condition that must be satisfied by a process is that its

maximum demand does not exceed the totzl storage capacity.

If, however, the computer can serve more than one process simultaneously,
one can adhers to the rule that cne only admits programs as long as the sum
of their maximum demands does not exceed the total storage capacity. This
rule, safe though it is, is unnecessarily restrictive, for it means that
each process effectively occupies its maximum demand during the complete
time of its execution. When we consider the following table (in which we

regard the processes as "borrowing" pages from available stors)

process maximum demancd present loan further claim

Pt 80 40 40

p2 60 20 + 40
available store = 100 - 60 = 40

(a total store of 100 pages is assumed), we have a situation in which is
still nothing wrong. If, however, both process request their next page and

they should bpth get it, we should get the following situation:

process maximum demand present loar further claim
P1 a0 41 39
P2 60 21+ 39

availabhle store = 100 - 62 = 38

EwD123 - 75

This is an unsafe situation, for both processes might want to realize
their full further cleim before returning a single page to availsble store.
30 esch of them may first need a further 39 pages, while there are only 38

availahle.

This situstion, when ore process cam only continue provided the other
one is killed first, is celled "The Deadly Embrace". The problem to be solved
is: how can we avoid the danger of the Deadly Fmbrace without being unneces-

sarily restrictive.

6.1. The Banker's Algorithm.

A hanker has & finite capital expressed in florins. He is willing to
accept customers, that may borrow florins from him on the following conditions.
1. The customer makes the loan for 3 tramsaction that will be completed
in a finite period of time.

2. The custemer must specify in adverce his maximum "need" for florins
for this transaction.

3. As long as the "loan" does not exceed the "need" stated in advance,
the customer can increase or decrease his loan florin wise.

4. A customer may not complain, if he asks for an increase of the

current lsan and receives froem the banker the answer "If I gave you the
florin you ask for you would not exceed your stated need and therefors you
are entitled to a next florin, At present, howsver, it is somewhat inconvenisat
for me to pay you, but I promise to send you the florin in due time."

5. His guarantee that this moment will indeed arrive is founded on the
banker's cautiousness end the fact that his co—customers are subjected to
the same condition as he: that as soon as a custamer has got the flarin he
asked for he will proceed with his transsctions at a mon-zero speed, i.e.
within a finite period of time he will ask for a mext flarin or will return
a florin or will finish the tramsaction , which implies that his complete

loan has been returmed (florin by floria).

The primary gquestions are
a) under which conditions can the banker make the comtract with a new

customer?

EWD123 - 76

b) under which conditions can the banker pay a (next) flarin to = requesting

customer without rumning into the danger of the Deadly Embrace?

. \ . . "
The answer to guestiaon a) is simple: he can accept any customer, whose

stated need does not exceed the banker's capital.
To answer question b) we intraduce the following termimology.

The banker has a fixed "capital” at his disposal; sach new customer

states in advance his maximum "need" and for each customer will hold

"need[i] = capital” (far =11 i},

The current situation for each customer is charactarized by his "loan®,

Fach loan is initially = O and shall satisfy at any instant

"0 < loan[i] < need{i]" (faor all i).

A useful quantity to be derived from this is the maximum further "claim®,

given by "claim[iJ = need[i] - lcan[i}" (for all i),

Finally the bamker notes the amount in "cash"™, given by
"eash = capital - sum of the loan‘s",

Obvisusly "0 << cash < capital"

has to hold.

In order to decide, whether a2 requested florin can be paid to the
customer, the banker essentially inspects the situation that wauld arise
if ke had paid it. If this situation is "safe", then he pays the florin,

if the situation is not "safe", he bas to say: "Sorry, but you have to wait.",

Inspection, whether a situation is safe amounts to inspection, whether
all customer transactions can be guaranteed to be able to finish. The algorithm
starts to investigate whether at least cne customer has a claim not exceeding
cash. If so, this custamer can complete his transactions and thersfare the
algarithm investigates the remaining customers as if the first ame had finished
and returned its complete loan. Safety of the situation means, that all

transactions can be finished, i.e. that the hanker sees a way of gettimg all

EWD125 - 77

his money back.

If the customers are numbered from 1 through N, the routine inspecting

a situation car be written as follows:

"integer free money; Boolesn safe; Boolean array finish dowubtful|[1:N|;
Lhkeger ¥i Hopie&n Zunlean arrsy

free money:= cash;

for i:= 1 step 1 yntil N do finish dcubtful[i}:: trus;
for i:= 1 step 1 until N do

begin if finish doubtful[i] and claim[i] < free maney then
begin finish doubtfullij:= false;
free money:= free money + lDan{i]; gaoto L
ond
end;

if free money = capital then safe:= true else safe:= false"

The above routine inspects any situation. An improvement of the
Algorithm has been given by L.Zwanenburg, who takes into account that the
only situations to be investigated are those, where, starting from a safe
situastion, a florin has been tentatively given to customer[j]. As scon as
"finish doubtfull j = false" can be executed the algorithm can decide
directly on safety of the situation, fur spparently this tempted payment
was reversible! This short cut will be implemented in the program in the

next section.

6.2, The Banker's Algorithm Applied.

In this example, the florins are processes as well., {Each florin, say,
represents the use of a magnetic tape deck; the loan of a florin is then the

permission to use one of the tape decks.)

We assume, that the customers are numbered from 1 through N angd that the
florins are numbered from 1 through M. Each customer has a variable "flarin
number® in which, after each granting of a florin, it can find the number of
the florin it has just borrowed; also each florin has a variabls "customer

number™ in which it can find by which customer it has been borrowed.

EwD123 - 78

Each customer has a stats variable "cusvar", where "cusvar = 1" means
"] am anxious to borrow." (otherwise "cusvar = O); each florin has a state
variable "flovar", where "flovar = 1" means "I =m anxious to get borrowed,
i.e. T am in cash." {otherwise "flovar = O"). Each customer has a binary
semaphore "cussem", each florin has a binmary semaphore "flosem", which

will be used in the usual manner,

We assume that each florin is borrowed and returmed upon customer indi-~
cation, but that he cannot finish the loan of a florin immediatsly. After the
customer has indicated that he has no further use for this florin, the florin
may not be instantaneously available for a next use. It is, as if the
customer can say to a borrowed florin "run home tc the banker", The actual
loan will only be ended after the florin has indeed returred into cash: of its
return into the banker's cash it will signal the customer from which it came
via a customer semaphore "florin returned". A P-opsration on this semaphore
should guard the customer for an inconscious overdraft. Before each flarin
request the customer will perform a P-operation an its "florin returned™; the

initial value of "flgrin returned" will be "= need".

We assume that the constant integers "N" and "M% (:capital) and the
constant integer array "need" are declared and defined in the universe in

which the following program is esmbedded.

The procedure "try to give to" is made into 3 Boolean procedure, the
value of which indicates whether a delayed request for a florin has been
granted, In the florin program it is exploited that returning a florin may
at most give rise to a single delayed request now being granted. (If more than
one type of facility is shared under contrel of the banker, this will no longer
hold. Jumping out of the for loop to the statement labeled "leave" at the

end of the florim program is thenm not permissible.)

EwD123 - 79

begin integer array loan, claim, cussem, cusvar, florin number, florin

returned[1:N],

flosem, flovar, customer number[?:M];

integer mutex, cash, k;

Boolean pracedure try to give to (j); value j; integer j;

begin if cusvar{j] = 1 then
begin integer i, free money;
Bonlsan array finish doubtful[1:N];
free mongy:= cash ~ 1;
-claim[j]:: claim[j] - 1; loan[i]:= laan[j] + 1;
for i:= 1 step] until N do finish doubtfulli]:= true;
LO: for i:= 1 step 1 until N do
begin if finish doubtfulli] and claim[i] < free money then
begin if i # j tren
begin finish doubtful{i]:= false;

free money:= free money + lcan[i};

gato L0

else
beqin comment Here more sophisticated ways for
selecting & free flerin may be implemented;
i= O
L1: dis= 1 + 15 4if fluvar[i] = 0 then goto L1;
florin number[j]:: i;
customer number[i]:: Js
cusvar[j]:: Q3 Fluvar[i]:: :
cashi= cash - 1;
try to give ta:= true;

V(cussem[j]); V(flasem[ij); goto L2

£nd;
claim[j]:: claim[j] + 13 lnan[j]:: lDan[j] -1
&nd;

try to give to:= false;

EwD123 - 80

mutex:= 1; cash:= M;

for ki= 1 step 1 until N do

begin loan[kj:= C; cussem[k]:: ; cusvar[k]:: 0; :laim[k]:: neEd{k};
florin returned[k 1= need[k]

end;

for ki=1 step 1 until M do

begin flosem[k]:= O; flovar[k]:= 1 end;

parbegin
custamer 1: beginmiiivesveivenrernnna. end;
customer N: begin...... ceeaesscassaan end;
florin 1: begin.esrerieereennrcenss end;

.
.

florin M: bEgin..ccuasecacsnsenssasend
parend

In customer "n", the request for a new florin consists af the following

sequence of statements;

"P{florin returned[n});

"P{mutex);

cusvar[n]:: 1; try to give to (n);

V(mutex);

P(cussem[n})" H
after completion of the last statement "florin number[n]" gives the identity
of the florir just borrowed, the customer has the ppportunity to use it and

the duty to return it in due time to the banker.

Ewl 23 -~ 81

The structure of a florin is as follows:

florin m:

begin integer h;

start:P(Fleem[m]);
"Now "customer number|m]" identifies the customer that has borrowed it.
The florin can serve that customer until it has finished the task
required from it during this loan. To return itself to the cash, the

florin proceeds as follows:"

claim{customer numbez[m]]:= claim|customer number[m]] + 1;
loan{ customer number[m]]:= laan|customer number[m]] - 1;
flcvar{m]:: 1; cash:= cash + 1;
V(flarin returned|customer number[m]]);
for hi= 1 step 1 until N do

begin if try to give to(h) then goto leave end;

leave:V{mutex);

goto start
end
Remark . Roughly speaking a succesful loan can only take place when two

conditions are satisfied: the florin must be requested and the florin must
be available. In this program the mechanism of cusvar and cussem is also
used (by the customer), when the requested florin is immediately available,
likewise the mechanism of flovar and flosem is also used (by the florin)
if, after its return to cash, it can immediately be borrowed again by a
waiting customer. This programming technique has been suggested by C.Ligtmans
and P,A.Voarhoeve, and I mention it because in the case of more intricate
rules of cooperation it has given rise to a simplification that proved to
be indispensable. The underlying cause of this increase in simplicity it
that the dynamic way through the topological structure of the program no
longer distinguishes between an actual delay or not, just as in the case

of the P-operation itself.

EwDi23 - 82

7. Conluding Remarks.

In the literature one sometimes finds a sharp distirction between
"concurrent programming" -more than one central processor operating an the
same job— and "multiprogramming" -a simgle processsr dividing its time
between different jobs—. [have zlways felt that this distinction was
rather artificial and therefore confusing. In both cases we have, macros—
copically speaking, a number of sequential processes that have to cooperate
with gach other and our discussions on this cooperation apply esqually well
to "concurrent programming” as to "multiprogramming™ ar any mixturs of the
two. What in concurrenmt programming is spread cut in space (c.q. equipment)
is in multiprogramming spread out in fime: the two present themselves as
different Implementations of the same logical structure and 1 regard the
development of a tool to describe and form such structures themselves, i.e.
independent of these implementatianal differences, as one of the major
contributisns of the work from which this monagraph has been born. As a
specific example of this unifying train of thought I shauld like to mention
—for those that are only meekly interested in multiprocessors, multiprogram—
ming and the like— the complete symmetry between a normal sequential computer
on the sne hand and its perifersl gear on the other (as displayed, for instance,

in Section 4.3%: "The Bounded Buffer").

Finally I should like to express, once more, my concern sbout the
correctness of programs, because I am npt too sure, whether =11 of it is

duly reflected in what I have written.

If I suggest methods by which we could try to attain a greater security,
then this is of course more psycholagy than, say, mathematics. I have the
feeling that faor the Human Mind it is just terribly hard te thimk in terms
of processing evolving in time and that aur greatest aid in controling them
is by attaching meanings to the values of identified quantities. For instance,

in the program section Nie 10
= ¥

LO: xi= sgrt(x); it= i — 13

if i > 0 then gato LOY

EwD123 - 83

we conclude that the operation "x:=sqrt(x)" is repeated ten times, but I
have the lmpression that we can do so by attaching to "i" the meaning of
"the number of times that the operation "x::sqrt(x)" still has to be re—
peated". (I know that in discussing program verification, Dr.P.Naur has
introduced the term "the general snapshot"; in all probsbility we have here
a trivial example of it.) But we should be aware of the fact that such a
timelese meaning {a statement of fact or relation) is not permanently
correct: immediately after the execution of "x:=sqri(x)" but before that of
the subsequent ™i:= i - 1" the value of "i" is "one more than the rumber of
times that the operation "x:= sqrt(x)" still has to be repsated". In other
words: we have to specify at what stages of the process such a meaning is
applicable and, of course, it must be applicable in every situation where
we rely on this meaning in the reassoning that convinmces us of the desired

overall performance of the program.

In purely sequential programming, as in the above example, the regions
of applicability of such meanings are usually closely connected with places
in the program text (iF not, we have just a tricky and probably messy program).
In multiprogramming we have seen —-in particular in Section 5.2.1- that it is
a worth-while effort tc create such regians of applicability af meaning very
consciously. The recognition of the hierarchical difference between the
presence of a message and the message itself, here forced upon us, might give

a clue even to clearer uniprogramming.

For example. if I am warried to orme out of ten wives, numbered from
1 through 10, this fact may be represented by the value of a variable "wife
number", associated with me. If I may also be single, it is a commanly used
programmer's device to code the state of the bachelor as an eleventh value,
say "wife number = O". The meaning of the value of this variable then becomes
"If my wife number is = O, then I am single, otherwise it gives the number
of my wife." The moral is that the introduction of a separate Booclean variable

"married" might have been more honest,

We krnow that the vern Neumann type machine derives its power and flexibility
fram the fact that it treats all words in store on the same footing. It is

oftern insufficiently realized that, thershy, it gives the user the duty to

EWD23 - 84

impose structure wherever recognizable.

Sometimes it is. It bas often been quoted as The Grest Feature of the
von Neumann type machine that it can modify its own instructions, but most
modern algorithmic translators, however, create an object program that
remains in its entire execution fase just as constant as the original
source text. Instead of chagtically modifying its awn instructioms just
before or after their execution, creation aof instructions and execution af
these instructians now occur in different sequenced regicons: the translatian

fase and the execution fase. And this for the bensfit of us all.

It is my firm belief that in each process of some complexity the
variables occurring in it admit analogous hiesrarchicsl orderings and that,
when these hierarchies are clearly recognizable in the program text, the
gain in clarity of the program and in- efficiency of the implementation
will be caonsiderable. If this monograph gives amy reader a clearer indication
of what kind of hierarchicazl ordering can be expected to be relevant, I
have reached one of my dearest goals. And may we not hope, that a confrom-
tation with the intricacies of Multiprogramming gives us a clearer under—

standing of what Uniprogramming is all ahout?

	Table of contents
	Preface
	0. Introduction
	1. On the nature of sequential processes
	2. Loosely connected processes
	3. The mutual exclusion problem revisited
	4. The general semaphore
	5. Cooperation via status variables
	6. The problem of the deadly embrace
	7. Concluding remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

