TECHNISCHE HOGESCHOOL EINDHOVEN
Afdeling Algemene Wetenschappen

Onderafdeling der Wiskunde

A short Introduction

to the

ART of PROGRAMMING

Prof. Dr. Edsger W. Dijkstra

August 1971

i_g) iﬂ?{:i ;..}}:Gi};

FEWD 3l6:
1T C

01
THE

A SHORT INTRODUCTION

TO THE ART
OF PROGRAMMING

by prof. dr. Edsger W. Dijkstra

Dictaatnr. 2.268 Prijs f 4,--

EWD316

EWDZ16: A Short Imtroduction to the Art of Programming
by

prof,dr.Edsger W.Dijkstra

August 1971

Contents.

20
73
44
53
64
71
76
89

Contents

Preface

Some fundamental notians

Frogramming languages and their implementation
Variables and relations between their values
Programs corresponding to recurrence relations

A first example of step-wise program compositian
The shortest spanning subtree of a graph

The towers of Hanoi

The prablem of the eight queens

A rearranging routine

EWD316 - O

EWD316 - 1

Preface.

The market is already so heavily overloaded with introductory texts on
computers and computer programming that one must have rather specific reasons
to justify the investment of one's time and energy in the writing af yet
another "Short Introduction to the Art of Programming”. The sole fact that
one likes to write is, in itself, an insufficient justification. Before
undertaking such a task I should therefore ask myself "Why am I going to do
it?" and also "What do I expect to be the distinguishing features of this

little monograph?".

There is a simple, practical reason. At my Unmiversity 1 give, mainly
for future Mathematical Engineers, am introduction to the art af programming
and my students would welcame some supporting material. Besides that, without
some form of lecture notes, my colleagues have very little idea of what I am
really trying to teach! The contents of this course show signs of settling
dawn -1 have now given it three times~ and therefore this seems the

appropriate moment to produce a document that can serve as lecture notes.

These are purely local circumstances and as far as they are concerned,
a normal set of lecture notes —in Dutch, say— would do. The fact that I have
not chosen this form means that 1 am aiming at a larger audience. Such an
gct is always somewhat presumptuous and the usual author's trick to save the
image of his modesty is to say that from various sides he has hesn urged to
produce his manuscript —a trick that I could apply in this case without
lying. But I don't think that I shall resort to that trick because I really
believe that a larger audience than just my students can bepefit from it, or

even enjoy it.

The fact is that aver the last years I have addressed myself to the
guestion of whether it was conceivable to increase our programming ability
by an order of magnitude and what techniques (mental, organizational or
mechanical) should then be applied 'in the process of program composition.
Personally, I felt these investigations very rewarding: I gained a much
deeper understanding of the nature of the difficulty of the programming
task, I became much more conscious about my "programming style", which im-
proved considerably, and found myself, when programming, in much better

control af what I was doing than I had ever been befare. Needless to say,

EWD316 - 2

my teachirg was heavily influenced by these experiences.
R I T VT |

The purpose of this little monograph is to assist the programming
reader in cleaning up his own thinking, to transmit to him some mental disci-
plines by sticking to which he can avoid making his job unnecessarily difficult.
It is born out of dissatisfaction with the usual kind of programming course,
which now strikes me as like the type of driving lessons in which ane is taught
how to handle a car instead of how to use & car to reach ane's intended des-
tination. This monograph is intended as a complement to suck courses:] shall
try to present programming —to quote Niklaus Wirth— "as a discipline on its own
merits, as a methodology of comstructive reasoning applicable to any problem

capable of algorithmic solution®,

I expect the distinguishing feature of this little monograph io be its

incompleteness, incompleteness in many, many respects,

It will rot be self-contained in the sense that I assume my readers
somewhat familiar with a decent higher level programming language. {This
assumption is a direct caonsequence of the local circumstance that my students

have had a modest prior exposure to the cleaner aspects of ALGOL 60.)

For those readers who identify the programmer's competence with a
thorough knowledge of the idiosyncrasies of one or more aof the baroque tools

inta which modern programming languages and systems have degenerated, the

book will alsa be very incomplete, because I won't describe any programming
language -not even the one I use— to any degree of detail. I shall use some

sort of programming language, as "a communication language" say, not for the

@
communication of algoritbms, but for the communication of ways of thinking,

as a vehicle for programming style.

In yet armother respect, this little monograph will be very incomplete.
As said above, I shall try to present programming "as a discipline on its own
merits, as a methodology of constructive reasoning, applicable to any problem
capable of algorithmic solution". At present, such a methodology does not yet
exist in the full sense of the word, only elements of it have become apparent,
others are just lurking behind our mental horizon. This, of course, is not very
satisfactory, but it is a true reflection of the current, still rather poor

state of the art. It is a consolation that no piece of scholarship ever reaches

EWD316 - 3

the state of perfection and I tell myself that the conviction that there is

more to come is ne justification for witholding what we have got.

It will also be iricomplete as a result of the choice of the examples

and the choice of the considerations. By necessity, the examples will be "small"

programs, while the need for a discipline becomes really vital in the case
of "large" programs. Dealing with small examples in an ad~hoc fashion gives
the student not the slightest clue as to how to keep the construction of a
large program under his intellectual control. Illustrating how we can avoid
unmastered complexity, [hope to deal with small examples in such a fashian,
that methodological extrapolation to larger tasks is feasible. The selection
of considerations is also kept to & strict minimum: we restrict ourselves to
praogramming for purely sequential machines and when we consider a trade-off
guestion, we shall usually present this in the form of a trade-off between
computation time versus store requirements. In this respect the document may
strike fhe reader as very strongly datéd, perhaps even out—dated by the time
it appears in print. If so, 1 hope that I can justify my defense, which 1is
that such a reader has failed to read between the lines: it is not so much
the particular trade—off guestion chosen that matters, as the fact that the
problem has been approached in such a fashion that we have made a conceptual
framework in which such specific trade—off questions can be postponed until
the appropriste moment. The only thing I can do at this stage is fc urge my
readers to read between the lines as much as possible. (If one tries to
transmit ideas or methods, one can talk -about them but that alone is insuf-
ficient: one must show examples illustrating them. When lecturing, it is my
sad experience that after having dealt with & specific example, I find the
attention of half my audience completely usurped by this example: they have
forgotten that the example was only brought to their attention to illustrate
sométhing more gemeral, This is a sad experience and no amount of prior warning
that this misunderstanding is bound to happen if they are not careful, has
ever enabled me to avoid it!) To put it in another way: it is my purpose tao
transmit the importance of good taste and style in programming, the specific
elements of style presented serve anly to illustrate what benefits can pe
derived from "style" in genefal. In this respect I feel akin to the teacher
of composition at a conservatory: be does not teach his pupils how to compose
a particular symphany, he mﬁst help hislpupils to find their own style and
must explain to them what is implied by this. (It has been this analogy that

made me talk about "The Art of Prugramming“.)

EWD316 - 4 ‘

There is a further class of potential readers that will find this subject
matter very incompletely dealt with, viz. those who identify the oragrammer's
task with writing programs in, say, FORTRAN or PL/1. One of my implicit morals
will be that such programming lanmguages, each in their own way, are vshicles
inedequate to guide our thoughts. If FORTRAN has been called an infantile

disorder, PL/T must be classified as a fatal disease.

Although I would love to do it, it is impossible to give a true
acknowledgement, listing all persons whose relevant influence on my thinking
I gratefully remember or should remember. With my apologies to all perscns
vnmentioned I would like to make a few exceptions and list in alphabetical
order: my mother mrs,B.C.Dijkstra - Kluyver, R.W.Floyd, C.A.R.Hepere, P.Naur,
B.Randell, D.T.Ross, N.Wirth and M.Woodger. None of the persaons listed,
however, should in any way be held responsible for the views expressed (with
the possible exception of my mother who is in some sense responsible for my

existence).

I am deeply indebted to my sister—in-law, mrs.E,L.Dijkstra — Tucker
for her willingness to correct my use of English in yet another manuscript
and to W.H.J.Feijen for the great care with which he has screenmed the text

for typing errors.

EWD316 - 5

Some fundamental notions,

In this section a number of notioms will be introduced, because they
are fundamental to the whole activity of programming. They are so fundamental
that they will mot be dissected into more primitive concepts. As a result,
this section will be a very informal one, analogy, metaphor and matural
language {poetry, if I were able!) being the only available vehicles to

convey their contents and comnotations,

It is not wnusual -although a mistake- to consider the programmer s

task to be the production of programs. (One finds terms such as "software
manufacturing", proposals to measure programmer productivity by the number
of lines of code produced per month etc., although I bave never seen the
suggestion to measure composer productivity by the number of notes, monthly
scribbled on his scnre!) This mistake may be at the heart of the management
failure which is so apparent im.many large software efforts. It is a mistake,

because the true subject matter of the programmer's activity is not the
program he composes, but the class of possible computations that may be
evoked by it, the "production" of which he delegates to the machine. It seems
mare fruitful to describe the programmer's activity ss "designing a class of
computatians", rather than as "making a program". In this conmnection it should
be borne in mind that the more relevant assertions about programs -e.g. about
their correctness or their resource demands— indeed pertain to the computations,
rather than to the last thing that leaves the programmer's hands, viz. the
program text, It is for this reasen that, when introducing fundamental notions,

I will start at the side of the computations, with the "happenings in time".

The first notion is that of an action. An action is a happening, taking
place in a finite period of time and establishing a well-defined, intended
net effect. In this description, we have included the requirement that the
action's net effect should be "intended", thereby stressing the purpesefulness.
If we are interested in the action at all, it will be by virtue of our interest

in its net effect.

The requirement that the actiom should take place in a fimite peried
of time is mast essential: it implies that we can talk about the moment TO,

when the actior begins, and the later moment T1, when the action ends. We

EWD316 - 6

assume that the net effect of the action can be described by camparing "the

state at moment TO" with "the state at moment TV,

An example of an action would be a housewife peeling the potatoes for
the evening dinnmer. The net effect is that the potatoes far the evening dinner
are at moment 7O still unpeeled, say in the potato basket inm the cellar, while
at moment T1 they will be peeled and, say, in the pan they are to be cooked

in.

When we dissect such a happening as a time sequence of (sub)acticns,

the cumulative effect of which then equals the net effect of the total

happening, then we say that we regard the happening as a sequential Dprocess,

or process for short.

Whensver such a dissection is permissible, we can regard the same
happening either as an acticn, or as a sequential process. When our interest
is confined to the net effect, to the states "before and after", then we
regard it as an action. If, however, we are interested in ore or more inter—
mediate states as well, then we regard it as a process. In the latter case
the moment 7O coincides with the beginning of the first subaction and the
end of each subaction coincides with the beginning of the pext one, with the
exception of the last subaction, whose end coincides with T1, the end of the

whole happening.

I must stress, that whether some happening is regarded as an action or
8s a process is not so much an inheremt property of the happening as an
expression of our moond, of the way in which we prefer to look at it. (Why we
should want to look at it in different ways will be left for later discussion.
Similarly, if we have chosern to regard the happening as a process, the way
in which it has been dissected is also not so much an inherent property of
the happening as a result of which of its distinguishable intermediate states

(for some reasan or another) we wish to take into consideration.

The happening of the potato~peeling housewife could, for irstance, be

described by the time-succession of the following subactions of the housewife:

EWD316 - 7

"fetches the basket from the cellar;
fetches the pan from the cupboard;
peels the potatoes;

returns the basket to the cellar"

Here the total happening has been described as a time—~succession of
four subactions. In order to stress that wé have given the description of a
happening, we have phrased it in the form of an eye-witness account. Naote,
that if the eye~witness did not bother to describe that the basket was’
fetched from the cellar before the pan was fetched from the cupboard, the
first two lines would have been condensed §nto a single subaction "fetches

the basket from the cellar and the pan from the cupboard”,

We postulate that in each happening we can recognize a pattern of

behaviour, or pattern for short; the'happening occurs when this pattern is

fellowed. The net effect of the happening is fully determined by the pattern
and (possibly) by the initial state (i.e. the state at mament TO). Different
happenings may follow the same pattern; if these happenings establish different
net effects, the net effect must have been dependent on the initial state as

well, and the corresponding initial -states must have been different.

How we can recognize the same pattern in different happenings falls
outside the scope of this text. If we meet a friend, we can recognize his
face, no matter what facial expression he shows: it may be an expression we
kave never seen on his face before! Similarly with different happenings: we
recognize the sams pattern, abstracting frnm.tha possibly different initial

states and net effects,

We return for a moment to the housewife. Dn a certain day she has peeled
the potatoes for the evening dinner and we have an eye-witness account of this
happening. The next day, again, she peels fhe potatoes for the evening dinner
and the second happening gives rise to‘an eye*ﬁitness account equal to the
previous one; Can we say, without furthe? ado: "Obviously, the two accounts
are equal to eachother faor on_bcth pccasions she has done éxactly the same

thing."?

How correct or incorrect. this last statement is depends on what we mean

by "doing the same thing". We must be careful not to meke the mistake of the

EWD316 - 8

journalist who, covering a marriage ceremony, reported that the four bridesmaids
wore the same dress. What he meant to say was that the four dresses were made
from material of the same design and =-apart from possible differences in size—

according to the same pattern.

The two actions of the housewife are as different from eachother as the
dresses are: they have, as happenings, at least a different identity: one
took place yesterday, one today. As each potato cam only be peeled once, the
potatoes invalved in the two happenings have different identities as well;
the first time the basket may have been fuller than the secomd time; the

number cf potatoes peeled may differ, etc.

Yet the two happenings are so similar that the same eye-~witness account
is accepted as adequate for both occasions and ithat we are willing to apply
the same name to both actions (e.g. "peeling the potatoes for the evening

dinner").

An algorithm is the description of a pattern of behaviour, expressed

in terms of a well-understood, finite repertoire of named (so-called "primitive")
actions of which it is assumed a priori that they can be done (i.e. can be

caused ta bappen).

In writing down an algorithm, we start by considering the happening to
take place as a process, dissected into a sequence of subactions to be done
in succession, If such a subaction occurs in the well-understood, finite
repertoire of mamed actions, the algorithm refers to it by its name. If such
a subaction does nat occur in the finite repertogire, the algorithm eventually
refers to it by means of a subalgoritkm in which the subactian, in its turn,
is regarded as a process, etc. until at the end all has been reduced to

actions from the well-understood, finite repertoire.

The notion of am algorithm, of an executable precept for the establish-—
ing of a certain net effect, is very well known from deily life: knitting
patterns, directions for use, recipes and musical scores are all algorithms,
And if one asks the way to the railway station in an unfamiliar town, one
asks essentially for an algorithm, for the description of a pattern of

behaviour which, when followed, will lead to the desired goal.

-9

[oh]

EWD31

In our definition of an algorithm we have stressed that the primitive
actions should be exescutable, that they could be dore. "Go to the other side
of the square." is perfectly scceptable, "Go to hell.", however, is rot ar

algorithm but e curse, because it cannot be done.

Besides that we have stressed that the repsripire should be well=-under—
stocd: between the one who composed the algorithm and the one whe intends to
follow it there should be no misundersianding sbaut this repertaire. (In this
respect knitting patterns are, as a rule, excellsnt, recipes are of moderate
guality while the instructions one gets when asking the way are usually
incredibly had!) How essential this lack of misunderstanding is may perraps
best be demonstrated by a recipe for jugged hare as it occurs in an old Dutch
cookery—hook; translated inta Engliéh the recipe runs as follows: "Ore taketh
a hare and prepareth jugged hare from it.". The recipe is not exactly wrong,

but it is hardly helpfull

Let us now contrast the eye-wilness account of the potato peeling

sSession:
* "fetches the basket from the cellar;

fetches the pan from the cuphoard;
peels the potatoes;

returns the basket to the cellar”

with the corresponding algorithm -the set of instructions, say, the housewife

might give to a new maid-:

"fetch the basket from the cellar;
fetch the pan from the cupboard;
peel the potatoes;

return the hasket to the cellax™

Comparing the two, we may well ask what we have gained, for 1t seems
a roundabout way of doing things: describing & pattern of behaviour which,
when fellowed, will evoke the happening, while in the eye—witness account we

had an sxcellent way of describing the happening itself,

What have we gaired? Well, nothing as long as we restrict ocurselves to
algorithms that can be given ~as in our example— by a concatenation of names
of actions, to be done in the given crder. Under that restriction an eye-

witness account of the actions "as they take place" is equally good. But the

EWD316 - 10

behaviour of the housewife (or the maid) could be a little bit more complicated:

let us suppose that after the pan has been fetched, she puts on an apron if
necessary, i.e. when she wears a light-coloured skirt and that on ane day she

uses the apron while on the other day she doesn't.

On a rather abstract level —i.e. without explicit menticning of the apron
and the condition under which it is used, a uniform eye~witness account would

still do {in some fashion) for bath sessions, e.g.:

"fetches the basket from the cellar;
fetches the pan from the cupboard;

takes preparation with regard to clothing;
peels the potatoes;

returns the basket to the cellar™

with the implicit understanding that "takes preparation with regard to
clothing" covers the empty action when her skirt is not light-coloured and

covers putting on an aprom when her skirt is light—coloured.

If, however, we want to go into more detail and want to mention the
apron explicitly, then "takes preparation with regard to ciothing"™ has to be

replaced in the eye—witness account of the one day's session by
"sees that her skirt is light-coloured and therefore puts on an apron
and in the other day's session by

"sees that ber skirt is not light—coloured and therefore omits putting

on an apran'

The trouble is, that the eye-witness account cannot contair the single

sentence:
"puts on an apron if her skirt is light-coloured"

for. then the audience justly asks "“dees she do it or not?". In other words:
in that degree of detail we cannot cover the two happenings by the same eye-

witness account, for in that degree of detail the two happenings differ!

It is here that the potential power of the algorithm becomes apparent,

for Qe can recognize the same pattern of behaviour in the two happenings and

by describing that pattern of behaviour we give something that is aﬁ!licable

I 3.

. “ . Lo T
e - - - . _ — SR ir S

EWD316 - 11

under baoth circumstances, light— as well as dark—coloured skirt. This is
possible thanks to the fact that what actually happens when a certain pattern
of behaviayr is followed may be co-determined by the state of affairs which

is current when the action bagins.

We sge twp things; the insppetign of whether the skirt is light-coloured
or not and, depending on the outcome of this inspectian, the action "put on
an apran" is to take place or not. In order to express this conditipnal
gxecution we nzed in our algorithm another connective besides the semicolon,
In our example of the slgorithm (I refer tc the instructians to the new maid)
the semicolon had a double fumction: in the text it separates ore action name
from the next action nama, but besides that it implied for the happening 2
certain amount of what is technically called "sequencing control", i.e, it
was meant to imoly that the end moment of the preceding action shoyld co-incide
with the beginning of the fallowing agtion. We now need amother conrective,
indicating whether or not the inspection should be followed by the next action

in the text. We write far instange the following algorithm:

"fetch thes basket from the cellar;

fetch the pan from the cupboard;

Aif skirt is light~coloured da put on an apron;
peel the potatces;

return the basket to the cellar”

(For historical reascns the sorcalled conditional cannective "if...do"

is split into two symbols "if" and "dg", enclosing the inspectian.)

The conditional cannective connects two actions, the first of whicﬁ must
be a so—called "inspection". This inspection describes a state of affairs,
which may be true or false ("false" is the technical term for "mat true"),

The happening which is to take place corresponding to the conditional

compound P . :
P "if irmspectieon deo action"

may take one of two mutually exclusive forms: either the inspectipn gives the
result true and it is followed by the action, or the ingpection delivers the
result false and thereby the whple campound action has been completed. The

algorithm derives its supericrity over the eye~witness account from the fac£

that ‘it may contain connectives {such as the conditional connective) that

imply a more elaborate sequencing contral than the semicolan,

EwD316 - 12

We need a further connective before we can see the full superiority of

the” algorithm over the eye-witness account, viz. a repetitive connective.

- Suppose that we want to express that "peeling the potatoes" is in itself
a process that deals with one potato at @ time and that, correspondingly, our
primitive action is named "peel a next potato™. If the number of potatoes to
be peeled is s fixed constant, say always 25, thén we can replace "peel the
potatoes” by 25 times "peel & next potato", separated from eachother by in
toto 24 semicolons. Hut we now assume that the number of potatoes to be peeled
may differ from one day to the next; yet we want to recognize in each peeling
session the same patterﬁ of behaviour. We suppose the housewife capable of
looking into the pan and judging whether the amount of peeled potataes is

sufficient or not.

If we know a priori that in the worst case (i.e. many guests and very
small potatoes) she will never have to peel mare than 500 potatoes, we can
give a general algorithm descrihing the actual peeling by repeating in the
text of our algorithm 500 times (separated by in totoa 499 semicolons) the

conditional compound:

"if number of peeled potatoes is insufficient do peel a next potato" .

Several pbjections can be made to this solution. There is the practical
cbjection that it would reduce the construction of algorithms to doing lires.
Furthermore we had to make the fundamental assumpiion that we knew irn advance
a maximum number. Often it is very hard to give such an upper bound a priori
and if it can be given, such an upper bound is usually many times larger than
the average value. And if im actual fact 25 potatoes have to be peeled, the
26th inspection "number of peeled potatoes insgfficient" -i.e, the first one
to deliver the result "false"— gives fresh infﬁrmation, the following 474
inspections (which are prescribed by the algorithm as suggested) give no new
infaormation. Once the housewife has established that the number of peeled
pota£nes is no longer insufficient, she should not be forced to look into

the pan another 474 times in order to convince hg;self!

In order to meet these objections, we introduce a repetitive connective

which, again for historical reasons, is written in two parts "while...dg".

Using this connective we canm write the algorithm:

EwWD316 — 13

"fetch the basket from the cellar;

fetch the pan from the cupboard;

if skirt is light-coloured do put on an apron;

while number of peeled potatoes is insufficient do
peel a next potato:

return the basket to the cellar"

The process correspanding to
"while inspection do action"
consists of one or more executions of the conditienal campound
"if inspecticn do action”

viz, up to and including the first time that the inspections gives the result

"false".

We can also describe the semantics of the repetitive connective in

terms of the conditional ore recursively:
"while inspection do action"
is semantically =quivalent tao

"if inspecticn do

begin action; while inspection do action snd" .

Here the symbols "begin" and "gnd" are used as opening and closing bracket
respectively; they are s syntactical device to indicate that thke conditional
connective cornects the inspection (from the first line) to the whole of the
seccnd line: the value delivered by the first inspection decides whether‘what
is described on the second line (from begin until end) will be done in its

entirety or will be skipped in its entirety.

Note. In the asbove 1 have approached the idea of an algorithm starting my
considerations from the class of happenings in which we wanted to discarn

the same pattern of behaviour. In addition toc the semicolon as connective in
the text of the algorithm this led to other connectives such as the conditional
connective "if...do" and the repetitive connective "while...do". It is not
unusual to approach the relation between algorithm and caomputations from the
sidelnf the algorithm; such an approach leads in a very early stage to

syntactical considerations, as a result of which the connectives are introduced

i

EWD316 - 14

in & somewhat different terminalogy. Instead of
"if inspection do action"

eople write . .
peap 7 "if condition dg statementt .

The part of the text denoted by "if condition do'" is then described
as "conditiomal clause", which is regarded as a prefix attached to the
"statement", the whole construction comprising clsuse and statement together

is then called "a conditional statement". Similarly, in
"while condition do statement"

"while condition do" is called "a repetitive clause" and the statement is
called "the repeatable statement™. This terminolagy is se widely usesd that
—-in spite of its syntactical origim— I shall not refrain from using it

whenever I see fit to do so.

As 8 final exercise I shall describe the pattern of behaviour of a
housewife who =for scme obscure reason— is so conditioned that she can only

peel an even number of potatoes for the evening dimner:

"fetch the basket fram the cellar;

fetch the pan from the cupboard;

Af gkirt is light—calecured do put on an apron;

while number of pesled potatoes is insufficient do
begin peel a next potato; peel a next potato end;

return the basket to the cellar' .

This example is included %o show that the same set of primitive actions allows

different patterns of behaviour.

The notion of an algorithm is a very powerful cne, for a single

algorithm “extracts" what @ large number of different happenings may have in

~common. And it does not do so by ignoring details, on the contrary, a single

algorithm covers a whole class of happenings to the very degree of detail in
which the corresponding eye-witness accounts would differ from sachother. The
possibly large number of differemt corresponding happenings is generated by

the different ways of seguencing as might be controlled by the conditional,

the repetitive {end similar, see later) connectives.

EWD316 - 15

On the one hand we have the algorithm, a finite text, a timeless, static
coencept; on the other hand we have the corresponding happenings that may be
evoked hy it, dynamic concepts, happenings evolving in time. The intimate
relation between the two —to which we refer by the term "sequencing"- lies
at the heart of the algorithmic notion. (It is to this intimate relation
that I refer whenever I stress that the programmer's true activity is "The
design of classes of computations".) The notion of an algorithm is admittedly
a very powerful onre; before going on, however, I shall allaw myself a little

detour in order to indicate what "price" we have paid for its introduction.

We have stated that we restrict ourselves to happenings taking place
in a finite period of time. Whenever an algorithm is followed, a happening
is taking place, eventually as a time-succession of primitive actions. It
is only realistic to postulate that each primitive action will take a finmite
period of time, unequal to zero: no action will take place "infinitely fast".
This implies that we confine our attention to happenings that are taking

place as a time~succesion of a finite number of primitive actions.

And now we are bteginning to see the price: it is very easy to write
down a text that locks like an algorithm but that is not an algorithm in aur
sense af the word, because the effort to follow it turmns out to be a never-—

ending task, e.g.
"while skirt is light—coloured do peel a next potato" .

When we assume that the peeling of a next potato does not influence the colour
of the skirt, we have just two cases: either the skirt is naot light"colohred
and the only action taking place is the inspection establishing this fact,

or the skirt is light-coloured and will remain so and what the pattern could
be interpreted to describe is the peeling of an infinite number of next

potatoes. This is usually called "an improper algorithm™.

The guestion of whether a text that looks like an algorithm is indeed
a proper algorithm or not, is far from trivial. As a matter of fact Alan M.
Turing kas proved that there cannot exist an algorithm capable of inspecting
any text and establishing whether it is a proper algorithm or not. The
assuﬁption of the existerce of such an algorithm leads to a contradiction which

will be sketched below. Suppose that we have such an algorithm, an inspection

"proper(L)"

EWD3t6 ~ 16

which delivers the result true when the text named L is a proper algarithm
and the result false when it is improper. Lansider now the following text,

named L:
L: "while prnper(t) do whistle once"

(in which "whistle once" is assumed to be an available primitive). If we
start to follow this algorithm, how many times will a whistle sound? The
assumption that "prOper(L)" delivers the result true will cause the algorithm
to be improper and vice versa! The conclusion is that no algorithm for the
inspection "proper" can exist. (Marvin Minsky concludes in "Camputation,
Finite and Infinite Machines", Prentice Hall, 1967 a formal treatment of this
proof with the sentence: "We have only the deepest sympathy for those readers
who havé not encountered this type of simple yet mind-boggling argument

before.".)

The moral of this sfory is that it is an intrinsic part of the duty of
everyone who professes to compose algorithms to supply a proaf that his text

indeed represents a proper algorithm,

Our nmext fundsmental notiom is a machine {or a computer"). A machine
is a mechanism capable of causing actions to take place following a pattern
of behaviour such as can be described by algorithms expressed in terms of a

repertoire of primitive actions belomging to this machine.

Abocve we bave given two algorithms for peeling potatoes, one for a
natural number of potatoes and one only for even numbers of potétoes. Both
algorithms have been expressed in the same repertoire of primitive actions.
They were introduced im the realm of "observing happenings"; the one could
describe the pattern of behaviour of my left=hand neighbour, the other the
one of my right~hand neighbour. Suppose that my own wife
1) is also capable of performing those primitive actions
2) will acecept from me algorithms expressed in these primitives and Qill

follow such an algorithm obediently.

Then I can make her peel sither as my left-hand neighbour or as my right—hand
neighbour, depending on the algorithm I have supplied to her. Then she is ap

example of a machine,

EwWD316 - 17

A mechanism that can only do one thing (such as one of the most widely-
spread actomata, the toilet flusher) is naot called a machine. Essential for
us is the associated repertoire of actions, the ability to accept patterns

of behaviour and to behave accordingly.

Machines are mechanical algorithm followers. The fact that in the last
cdecennia increasingly powerful machines have become available to mankind is
directly responsible for the increased importance of and interest in algarithms

and their composition.

Note. It is a trivial matter to compocse an algoritbm for the fastest machine
in the world, a proper algorithm in the theoretical sense of the word but
somewhat impractical, as it would take the machine a million years to carry
the corresponding process to completion. The claim that "the machine is
capahle of causing the process to take place'" is then somewhat subject to
doubt: irn actual fact it cannot. In what follows we shalln't be bothered by
the distinction between "theoretically possible" and "practically feasible™.
Not because we are impractical, on the contrary! The point is that in the
meantime computers are so powerful that the class of practically feasible
computations is by now sufficiently large —to put it mildly!- to make
machines very useful and intriguing pieces of eguipment, fully worthy of

gur attention.

We call an algorithm intended to control the behaviour of a machine,
a program. In other wocrds, we reserve the name program for those algarithms
that are intended for mechanical execution. In the gerneral notion of an
algorithm we have only required that the repertoire should be "well-understood",
without bathering how this understanding is established: if a composer
indicates "Andante" (= "going") for a composition in three-four time, he may
do so, because, remarkably enough, we may expect this indication to be somehow
meaningful even for a player with two legs. In the case of a machine, the
situation is drastically different, for a macﬁine 1s a finite piece of equipment
which, by its very construction, has associated with it a finite, very well
defined repertoire and whenever it is fed with a program it shall behave

exactly as prescribed.

The fact that machines are completely abedient slaves has caused

complaints from many beginning programmers. Their obedience, they felt, makes

EWD316 - 18

programming cruelly difficult, for a trivial mistake in the program is sure

to lead to entirely unintended behaviour. The programmer's inability to appeal
to "the common sense of the machire" has been experienced as one of its major
shortcomings. The more experienced programmer learns to appreciate its servile,
strict obedience: thanks to it we can instruct it to do something “uncommon!
And this is something you cannat do with a servant who "rounds off" his

instructions teo the nearest probable interpretation.

In the preceding paragfaphs I have introduced programming as an
important activity because now we have machines that can be controlled by
programs and for which we have to compose programs when we want to use them,
i.e. when we want to convert them inte the tool solving our problem, But this
is nat the whole story. A computer is a many-sided thing. For its manufacturer
it is primarily a product that he can (hopefully) produce and sell with
profit. For many institutional buyers the computer is probably primarily a
status symbol. For many users it is either a source of endless worries or,
as the case may be, a highly useful tool. In University surroundings, the
view of the computer as a tool to be used tends to be the predominant one.

And there is no denying it: in their capacity of tools the computers are
changing the face of the earth (and of the moon as well!). Yet I am convinrced
that we underestimate the computer's significance if we confine our appreciation
of it to the aspects mentioned. They may cause shocks to the basié of our
society, but I believe that im the longer run these will turn out te be but
rippleé on the surface of our culture. I expect a much more profound influence
from the advent of the maodern camputer, viz, in its capacity of a gigantic

intellectual challenge, unprecedented in the history of mankind.

The computer as a piece of equipment presents us with an entirely nrew
combination of simplicity and power, which makes the programming task a
unique challenge. When the elsctronic engineers have done their job properly,
they present to the programmer a mathematically trivial piece of eguipment.
Its instruction code (its "repertoire") can be described perfectly well on
a modest number of pages, everything is fimite and discrete, there is just
no place for conceptually difficult mathematical paticn5, such as continuity,
infinity, limits, irrational numbers and whatnots. The mathematical basis of
programming i1s just very, véry simple. so simple that programming should be
easy: it should be easy to conceive programs, it should be easy to convince

onegelf thaffé.pﬁﬁgram is correct and that the machine working under its

o

EwWD316 - 19

control will indeed produce the desired result. From its basic simplicity
one derives the intuitive feeling that it should be a trivial matter to keep

the happening evoked by one's pragram firmiy within one's intellectual grip.

But its basic simplicity is only one side of the coin: the other side
presents the extreme power (bcth as regards capacity and speed) of currently
available computers. As a result of its extreme power, both the amount of
information playing a role in the computaticns as well as the number of
aperations performed in the course of a computation, escape our unaided
imaginatian hy several orders of magnitude. Due to the limited size of our
skull we are absolutely unable to visualize to any appreciable degree of
detail what we are going to set in motion, and programming thereby comes an
activity facing us with conceptual problems that have risen far, far abaove

the original level of triviality.

It is the possibility of considering realistically effective solutions
of any degree of sophistication, combined with our complete intellectual
grip cn what we are considering, which will deeply influence our ways of
thinking and our appreciation of our own thought processes. It has no precedent,
for whenever in the past we were faced with something powerful (a storm or an
army) we never had effective control over it. (This, for a long time, used
to be the definition of "powerful", viz. that we were "powerless" in the

face of it!)

EWD316 - 20

Programming Languages and their Implementation.

The activity of composing programs is called "programming". In the
preceding section we have introduced programs as algorithms intended to
control the behaviour of machines and by virtue of the actual existence of
such machimes, programming is a very practical activity. It is one of the
youngest branches of applied mathematics (in the broad sense of the word,
i.e. not confined to mathematical physics or numerical amalysis), it is as
important as the applications in question, it is practical in the sense that
it is the programmer}s intention that a machine will actually display the
behaviour as prescribed by the algaritbm, For that reason a conscious
programmer should respect the limitations of the (finite) machines. Alternative
programs causing a machime to establish the same net result and therefore in
that respect equivalent, may differ greatly in what is usually called
nefficiency", i.e. in the demands they make upon the machine's resources.
For many years, efficiency has been used as the sole yard-stick along which
to compare the relative quality of alternative programs for the same task.
In the meantime, programming has turned out to be so difficult, that other
guality aspects have gsined relative importance, such as the sase with which
we can understand a program, can convince ourselves of its correctness or
can modify it, etc. Yet, efficiency concerns cannat be ignored and in order
to give the reader some feeling for the nature of the limitations he should
respect, we shall give in this section an overall view of computing machines

and the way in which they execute progréms.

In this little monograph we shall confine our attention to sequential
algorithms, i,e. algorithms describing what actions should happen in sucﬁession,
one after the other. Such algorithms have a property for which'they have been
blamed (and not entirely without justificatinn), viz. that they are often
"gverspecific" as regards the order in which things have to happen. If two
actions, say "A" and "B" have both to be done, a purely sequential algorithm

will prescribe
either "A; BY : or "H; A"

viz. action A followed in time by action B or the other way round. It will
not express that the arder is immaterial and, what is possibly more important,
it will not express that the two actions are so t"mon-interfering" with eachother

that they may take place concurrently, or —-to use the jargon— may be done in

EWD316 - 21

parallel.

For various reasaons 1 have decided to restrict my attention to purely
sequential programs, The most obvious reason is to be found in the structure
of the machines that are currently available or can be expected to become
available in the next years. One or two decades ago, machines used to be
purely sequential. In the meantime we have got equipment allowing for a
limited amount of parallelism (dual processor machines, independent communicatian
channels etc.), but such pieces of equipment are at best an aggregate of a
small number of individual sequential components, In such machines the
potential parallelism of activities is exploited by standard cantrol programs
(so-called "operating systems"), while the individual user still works in a
gtrictly sequential environment. And it is to the inmdividual user that this

little morograph addresses itself.

With the advent of what is called "large scale integration" (being a
term from the computer field, its acrarym "LS5I" is better known!) it seems
to became technically feasible to build machires more like "clouds of arithmetic
units” with information pracessing activities going on simultaneously all
over the place, for shorter periods of time even independently of eachother,
Programming for such machines will pase completely different trade-off
problems: one will he willing to invest in potentially useful computing activity
before its actual usefulrmess has been established, all for the sake of speeding
up the whole computation. But although I know that such machines may be coming,
I shall not touch these prablems for the following reasons. First, as far as
general purpose applicstions are concermed, I have my doubts about the
effectiveness with which such forms of parallelism can ever be exﬁloited.
Second —and that is the most important consideration— parallel programming
is an order of magnitude more difficult than seguemtial programming. (This
statement will be doubted but I have enough experience in multiprogramming
to feel myself entitled to say so. The point is fhat with parallelism a
great variety of happenings may take place under control of the same program{s).
On account of undefined speed ratios a set of parallel programs is written
for a partly non-deterministic machine and special care is required to ensure
that, on a higher level of abstraction, its total behaviour can again be
regafded as uniquely determined by the program(s).) Third, I am not aver-

impressed hy the complaints that sequential programs specify a more stringent

EWD316 - 22

time-succession than logically necessary: I have often the somewhat-uneasy
feeling that these complaints find their origin in the mathematical traditien
of the pre-computer age. In classical mathematics the notion of an algorithm
has been neglected; mind you, 1 am mot blaming the previous mathematicians

for this, because before the actual existence of automatic computers, algorithms
were hardly a relevant subject. But we should not close our eyes to the fact
that the course of history bas caused mathematics to be more tuned to timeless
problems, to static relations, to functional dependence. (The existence of
classical mechanics does not contradict this observation: renaming the indepen-—
dent variable in the differential equations "k", say, instead of the usual "t"
does not influence the mathematics invulved.) Same of the efforts to remove

the overspecification of the time—su:cessinn =they rely heavily on functional
dependence— strike me as tackling the programming problem with classical
concapts that have been developed for other purposes. So much for my decision

to restrict my considerations to sequential machines.

To get some feeling for the demands made upon the modern automatic
computer, let us focus our attemtion for a moment upon an average sizeable
computation, for imstance, the computation of (a good approximation of) the
inverse of a givem matrix of, say, 100 by 100 elements. Such a job has twa
markedly guantitative aspects:

a) a vast amount of numbers is involved: posing the problem impliss the
;pecification of 10.000 numbers, the answer is also given by 10.000
numbers (each of which is, in ganéfal. a function of all 10,000
elements of the given matrix)

b) a vast amount of computation has to be done: if it is done by eliminatiaon,
the number of operations (i.e. multiplications and additions) is of the

order of magnitude of 1.000.000.

The construction of machimes able to cope (reliably!l) w£¥h‘fhese two
very different aspects of "multitude" is one of the greater triumphs of
electronics. It bas been achieved by applying the old and well-—known principle:
"Divide and Rule.". In modern computers oné can distinquish two vital components,

gach of which has the specific task to cope with one of the forms of multitude.

a) the store (called "memory" in American); this is the component able to
receive, store and return vast amounts of information; its primary

function is to be large, to be able to contain very much information

EWD316 - 23

b) the arithmetic unit or processor; this is the companent in which the
actual work —adding, subtracting, multiplying, comparing etc.~ is done;
its primary function is to be very fast so that it may do a2 great deal

in a limited period of time.

It is pot the function of the arithmetic unit to be large in the sense
that it sbould contain large amounts of information. On the contrary: while
nearly all the information, relevant for the computation at large, lies
“sleeping" in the store, at any moment of time only the tiny fraction actually
involved in the information processing activity is found {copied) in the
arithmetic unit, which is only capable of dealing with a few numbers at a
time, say the two numbers to be added and the sum formed by the act of
addition. Whenever two numbers (in store) are to be added, they are trans-
ported from the store to the arithmetic unit, where the sum will be formed;
agnce formed the sum will either be kept in the arithmetic unit for immediate
further processing or it will be sent back to store for later processing.,
Microscopically, the store acts as the icebox in which all information is
kzpt which is not involved in the current activity of the arithmetic unit,
If small letters indicate variables in store and R indicates a register in

the arithmetic unit, the computation
x:= (8 + b)*(c + d)

might be esvoked by the following sequence of instructions:

The first instruction fetches the value of “a" from store into the
register R, the next one increases (the contents af) R by the value of "b"
(fram stqre). At this stege ore of the two factors to be multiplied has been
computed. Before the multiplication can take place, the second factor has to
have been computed as well;.in a machine with a single register R for arithmetic
results, this second addition implies again the use of the register R. In

order to make this register available for this purpose, the third instruction

EwD316 - 24

sends the value of the first factor —a sc—called “intermediate result"— back
to store, assigning it to a variable here named "t'": the %ifst sum is sent
back te store for later usage. The fourth and fifth instructions compute the
second factor, the value of which is left in R, ready for multiplication by
the stored value called "t". The last imstruction stores the product, now

formed in R, so that it can be retrieved under the name '"x" for later usage.

Tha above example illustrates meny thirmgs. It shows how
xi= {a + b)*{c +a)

which on one level of intersst cen be regarded as a single action, on closer

inspection turns out to be a sequential process taking place as a time—succession

of seven more primitive sub~actions {("program steps"). It also shows that at
any moment in time only a tiny portion of the algorithm is‘in active control
of what actually happens: while the first or the second addition is performed,
the fact that the two sums will have to be multiplied is still "dormant'. (If

the total action had hsen
xi= {a + b)/{c + d) ,
the only modification necessary would have heen the replacemsnt of the sixth

instruction by

R::‘t/R

-y

the first five instructions would have been insensitive to this change. That

is what I meant by "dormant".)

It also demonstrates that, just as at any moment in time, only a tiny
Traction of the numericasl information is involved in actual processing, also
only a tiny fraction of the piogram exercises control, viz. the instruction

currently executed.

It also demonstrates that it is no good just to divide the mschine into
two components, store and arithmetic unit, but that one must alsc provide for
a (dense) information traffic between the two: this is provided for by what

connects the two together, the so—-called "selection.

We have said that the store should be able tc store information; it must,
for instance, be able to store "numbers", e.g. the intermediate result called
"t". Cbviously, these numbers cannot be kept in store like balls in an urn:

when the instruction

EWD316 - 25

has to be executed, the store must not return just any number, but quite
definitely it must return the value sent to it two instructions earlier. For
that reasor the numbers in store are not arranged as balls in an urn, on the
contrary! Store is arranged as a number of so~called "storage cells", each
capable of holding the value of one number at a time. Each storage cell is
identified by its so-called "address"; each time contact with the store is
required —either to receive or ta return information— this request is
accompanied by a statement of the address of the storage cell involved. If
the store is to receive information —this is called "writing into store"- the
value to be stored and the address of the storage location involved (plus a
"write request") are sent to store and selection respectively; as a result

of the Qriting cperation the original contents of the starage cell, which get
lost, are replaced by the new value. If the store is %o return information
—this is called "reading from store"- the address of the storage cell invelved
(plus a "read request") is sent to the selection; as a result the contents

of the storage cell are returned from store {and kept in the storage ceil as
well for later reading if desired). As far as destruction, reception and
reproduction of the infaormation contained in a storage cell are concerned,
the situation shows great analogy to a tape in a tape recorder. You can use
the tape to record as many pieces of music as you want, but only one at the
same time: whenever you record a new piece of music on an old tape, its previous
contents are wiped out; the piece of music currently recorded, however, can
be played back as many times as you wish. (To make the analecgy a true one,

we must restrict ourselves to pieces of music of equal duration, precisely
matched to the length of the tape, matched to its (finite) infﬁrmation

capacity.)

Storage cells can store information by virtue of the fact that they can
be in a finite number of distinct states. In practically all computers they
are composed af elementary components, each of which can be in one of two
possible states. (The most common form is a little ring of Ferrumagnetié
material that will be circularly magnetized in oae of the two possible directions,)
One such component can be in 2 different states (say "North" and "South"), two
such ‘components can be together in 4 different total states ("North-North",

"North-South”, "South-North" and "South-South™), N such components together

EWD316 - 26

can be in 2N mutually different states. The number of elementary components
associated with each storage cell is a characteristic comstant of the machine's
store and is called "the word length". If the word length is 32, the number
of different possible total states per word is 232, i.e. slightly aver 4*109;
the arithmetic unit will associate with each state a numerical value; in terms
of these numerical values & storage cell can then hold, for instance, amy

J to +2*109.

integer value ranging from (roughly) =2*10
The finite capacity of the storage cell is something the user must be

aware of: it is matched to the abilities of the arithmetic unit, i.e. if the

latter deals with integer values it is geared to operations up to a certain

maximum absolute value, if it deals with (approximatimns of) real numbers,

it is geared to dealing with them in a certain precision, maxiﬁum ahsolute

valug and precision respectively being chosen such that the numerical values

to be distinguished between can be stored in one (or possibly two successive)

storage cells. If greater integers or resls in higher precision have to

be manipulated, special measures have to be taken which will be more

expensive.

In the meantime we have explained emgugh about the general machine
structure to mentiom two aspects of the "costs" involved in the execution of
a program. One of them is computation time. We have seen that the arithmetic
unit perfarms one aperation after the other, and the more operations a program
prescribes, the longer the total ampunt.of time the arithmetic unit will have
to spend to carry the computation to completion. The other one is storage
usage. 1f a thousand values have to be computed in order to be added together,
we may compare the follawing twe algorithms. The first one first cemputes all
thousand values and stores them, after which they are added, the second
algorithm immediately adds sach number to the partial sum as soan as it has
been computed. With regard to storage usage the first algorithm is more demanding:
at some stage of the computation it requires a sufficient amount of store to
hold all thousand values, an amount of stere which in the second algorithm

remains available for other (perhaps more useful) purposes.

So much for the finite capacity of each storage cell and the fact that
a store contains only a finite number of such cells. Let us Treturn to their
addresses: a while ago we have hinted that each storage cell is identified by

an "address" and that each reference to store takes place under control of

[N

EWD316 - 27

the address of the storage cell concerned, but up till now we‘have not been
very explicit about what an address really is. Well, this is very simple: the
storage cells are numbered: O, 1, 2, 3, 4, 5, ... up to and including M-1

if the store comprises M different storage cells (M between 16.000 and
1.000.000 being typical figures), and the ordinal number of each storage

cell is used as "its address" (like houses in a streetl) This implies that
the storage cells have a natural order, viz. the order of increasing address.
Given the address of a storage cell, the address of the next storage cell

can be computed by adding 1 to the given address of the precedinrg one.

This natural ordering of the storage cells is heavily exploited. If
a vector, i.e. a sequence of numbers ao, a1, cee an has to be stored,
its elements can be stored irn successive storage cells. If the address of
element.ao is known, the address of element a, can then be computed, viz,
by adding (the value af) i to the address of the element 3y

The natural order of the storage cells is also exploited in the
program representation. Remember, we have postulated that a machine could
"accept" & program and that, ance the program had been accepted, the machine
could execute the program (i.e. cause the happening as prescribad by the
program). In other words, when the machine is executing the program, this
program —i.e. "the information describing how to behave"— must be somewhere
in the machine! Where? Well, in the store, the store being specifically the
machine component able to hold information. In ather words, the store is
used for two different purposes: it holds the numerical information to ke
manipulated, but it also holds —in some other part of it- the program, i.e.

the information describing what manipulations have to be performed.

To sketch briefly how this can be done, we return to our previous

example, where e (a + b)*(c +.d)

was decomposed into the sequence of seven instrucdtions demoted by

EWD316 - 28

xt= R

and the question is: by means of what conventions do we represent the above
information in a store capable of holding numbers? This is achieved by a
two—sfage convention, ane for representing single instructions and one

for representing a sequence.

The first convention is to choose for each instruction a unigue number
code. In the above natation we have denoted variables (or: the addresses
of the storage cells- associated with the variables and containing their
current value) with small letters {a, b, c, d, t and x); but addresses are
numbers and that component is therefore already numerical. Using "s" for
"gny address" we see that in the above example, we can distinguish instructions

af four different types:

1) R:= s
2) Ri= R + s
3) Ri= s * R
4) si= R

The second part of the convention associates with each type of instruction

a number (e.g. the numbers 1, 2, 3 and 4 to the types shown above; it should
be mentioned that in actual machines the number of instruction types is
considerably larger than 4). By concatenating the digits describing the
instruction type mumber with those giving the address we have a number code
for sach possible instructien and we assume that the word length of the
storage cell is sufficient to contain such a number. The first convention as
just described, reduces the problem of storing a sequence of instructions to
storing a sequence of numbers. Now the second convention is that the seqﬁence
as such is represented by storing these numbers in successive storage cells,
i.e. storage cells with successive addresses. And this completes (roughly)

the trick.

{Note., This is by no means the only way to represent programs inside
the machine's store; in so~called "stack machings" other conventions are
chosen. The above elaboration is only shown by way of example, demonstrating
the possibility.)

The dual role of the store —storage of instructions and storage of

variables— implies another way in which a program can be expensive to execute:

EwD316 - 29

if the program text is very long, by thaf very fact the program text will
make a heavy demand on storage capacity. [f we have two alternative programs
for the same job, one requiring 5000 instructions to describe it and the
cthe; requiring 10000 instructions to describe it, then =—all other things

being equal- the first alternative will be cheaper.

The above concludes our bird's eye view of the so—called hardware
machine, i.e. the physical piece of electronic equipment as it is delivered
by the manufacturer: a machine that can accept and then execute programs
written as long sequences of instructions from an instructicn repertoire
that is specific for this particular machine (and its copies). Until the
late fifties programmers indeed produced their programs as long sequences
of such instructions, but when machines became faster and when mors came on
the market, the shortcomings of this way of working became more and more

apparent.

Because the programmer expressed his program in terms of the imstruction
repertoire of that particular machine, he was forced to tailor his program
to that machine. He meeded a thorough and ready knowledge of all the details
of the instruction repertoire of that machine -which for the more intricate
machines was no mean task— and worse: once his program was written, it could
anly be executed by that particular machine. Exchange of programs between
institutes equipped with different machines was impossible; furthermore,
whenever an institute replaced its old machine by a new and different one,
all programs for the old machine became obsolete. From that point of view it
was clear that tailoring one's programs so clasely to the idiosyncrasies of
a specific piece of hardware was not a very wise investment of the intellectual

energy of one's programmers.

But even without the problem of transferring programs from one hardware
machine to another, this way of programming, expressing programs as a mono-—
tongus stream of machine instructions, showed great drawbacks. One serious
drawback was that this close contact between programmer and physical machine
did not only enable the programmer to lard his program with all sorts of
coding tricks, it actually in@ited him to do so. For many a programmer this
temptation became irresistible; there even has been a time when it was

generally believed that one of the most vital assets of a virtuoso programmer

was that he be "puzzle-minded", and it was only slowly recagnized that a

EWD316 ~ 30

clear and systematic mind was more essentiall When "tricky programming" was
en vogue, programming was not only very expensive =it took too much time-
it also turned out to be too difficult to get a program correct. Looking
back, the period of tricky programming row strikes us as a generatior of
programmers walking on a tight—rope, in full confidence because they were
unaware of the abysmal depth beneath it! The modern competent programmer

is more humble and avoids clever tricks like the plague.

It was not only the preponderance of coding tricks that made programming

"in machine code" as it is called nowadays, too difficult and too risky.

Firstly, a program in machine code contains very little redundance and
as a result it is very sensitive to even small writing errors —errors of the

level of "spelling mistekes" or "printing errors".

Secandly, the programmer who thinks in terms of variables has to denote
these variables in his program text by the addresses of the storage cells
dedicated (by him) to hold their values. As a result the programmer has the

burden of storage layout and all the clerical work implied by this.

Thirdly —and this is the major reason— machine code is an impraper
vehicle to represent "structure": it is just a single, monatonous sequence
of machine instructions, incapable of expressing in a direct and useful form
the structure of the algorithm. In what follows it will become abundantly
clear that when we wish to compose programs in a reliable fashion, we can
only do so by structuring the happenings we intend to evoke, and that we are
in urgent need of a descriptive vehicle such that in the program text itself
the structure of the happenings —-i.e., of the computations— camn be adequately

reflected.

The above shortcomings led to the design nf so~called "(higher level)
programming languages". A programming language can be regarded as the
machine code for a fictitious, idealized machine. Whereas the old machine
codes were tailored to the neéds of the hardware -i.e, the eguipment elec-
tronic engineers could make— programming languages are more tailored to the
inteilectual needs and conceptual difficulties of the programmer who has ta

design the computations.

EWD316 - 31

The problem now is that on the one hand we have the hardware machine
A, that can be built but for which we don't like to program hecause it is too
cumbersome, and on the other hand we have "dreamed up" the fictitious machine
B, fo; which we would love to program but which the engineers cannot build,

How do we bridge that gap?

The gap is bridged by "software”: given machine A, we can make, once
and for all, a program (in the machine code for machine A) which prescribes
to machine A the pattern of behaviour it should follow if it is to simulate
machine B. Such & program is called "software for machine A", Given hardware
machine A, loaded with software, we have a mechanism —partly "hard", partly

"spftP"— that is able to execute programs written for the fictitious machine B.

Usually this combination of hard- and software processes such programs
in two stages. In the first stage (the "translation stage") the program
written in the programming language B is subjected to a translation process.
In this process a storage layout is decided, the necessary bookkeeping is
carried out and an equivalent program —but now expressed in machine code A-
is produced. In the second stage (the "execution stage") the output of the
first ome is interpreted by machine A as & program and the intended computation

is evoked.

The standard software that goes with the machine shields the user from
the idiasyncrasies of the specific machine; apart from that it invokes ~behind
the user's back, so to say— the standard ways of dealing with the tougher
properties of the hardware, such as the possible parallelism (i.e. concurrence
in time) of the computation proper and information transfers from and to
peripheral devices and multilevel stores. Up till now we have described the
hardware as if all storage cells were equally well accessible for the
arithmetic unit. In practice this is seldom the case, two storage levels
being quite common: primary store (usually ferrite cores) and secondéry
store (usually magnetic drums). The cells in briﬁary.stnre are the only ones
that are directly and immediately accessible for the arithmetic unit; the
information in secondary stare (which in capacity is an order of magnitude
larger than primary store)_ié not directly accessible for the arithmetic
unit, but the possibility of bulk transfers between primary store and

secondary store is available instead. In such machines,'the software may

move the information around between the two stores, all the time keeping

Y

EWD316 - 32

track of where everything is to be found at any moment and trying to keep
in primary store all "currently relevant" information. {This is called "the

implementation of a virtual store".)

We have mentioned the cormcept of the virtual store because it is
related to an efficiency aspect over which the programmer has some control
and in regard to which the programmer therefore has some respansibility.
This is called "vagrancy". A program has a small degree af vagrancy whenever
for larger periods of time accesses are confined to a small, dense subset
of the total amount of information; irn that case the hope is justified that
during that period of time, this dense subset will be kept in primary store
and that therefore the computation can go on at full speed. In computations
with high vagrancy, the prabability of information needed in secondary store
is much larger and the transport facilities between the storags levels then
tend to become the bcttie*neck. Therefore, if possible, high vagrancy

should be avoided.

EWD316 - 33

Variables and relations between their values.

When introducing the basic notions we have said that different
happenings could take place following the same pattern of behaviour, And as
the bappening is fully determined by the confrontation of the pattern of
behaviour with the imitial state, it follows that the same pattern of
behaviour can only evoke different happenings on different occasions when
at these different occasions the initial states differ from eachather. In
this section we shall show how so-called variables are used for the
description of the (initial and final) states. We find the typical use of
variables when the same pattern of behaviour is followed repeatedly, i.e.

when sequencing is repetitively controlled.

We begin with a very simple program: given two positive integer
values A and B, a program has to be made that will compute (i.e. can cause
a computer to compute) the Greatest Common Divisor of A and B. Let us use

the notation GCD(A, B) for that value,

(Remark.We have restricted purselves to positive numbers in order
to make life somewhat easier. Zero is divisible by any positive integer D

(for 0 = 0 * D), and there would be no objection, with B> 0, to
GCD(0, B) = B .

But admitting zero as argument is asking for trouble, because GCD{O, O} is
clearly undefined! In order to avoid these complications, we restrict

ourselves to positive arguments.)

For the sake of argument we request an algorithm in which no arithmetic
operations other than addition and subtraction will be used. How do we find

such an algorithm?

Well, there seem inm this case to be twu'ways of attacking the problem.
The first one is more or less a direct application of the definition. One
could construct a table of diviéors of A (including 1) and a teble of
divisors of B {also including 1); as both A and B are finite and different
from zero, both tables contéin only a finite number of numbers. From these
two tables of divisors one cam construct a third table of common divisors,

i.e. containing all the numbers occurring in both of them, This third table

EWD316 - 34

is non—empty (because it contains the number 1) and it is finite (beéause it
cannot be longer than any af the original tables). From this non-empty, finite
table we can select the greatest number and that will, by virtue of the way

in which it has been found, be the Greatest Common Divisor,

We could do it along the lines just sketched (or at least use it as a
source of ihspiraticn). In the current example, however, there is a second
line of attack because the GCD is a well-known mathematical function, "Well-
known" meaning that a number of its properties are known. If we can think of
s0 many of its propefties that they define the GCD -i.e. that the GCD is the
only function satisfying them— we might try to determine GCD{A, B) by

exploiting these properties. What properties can we think of?

1) GCD(a, b) = GED(b, a)
2) Gth{a, b) = GCD{a + b, b) = GCD(a, a + b)
3.1) if a>b: GCD(a, b)

Il

GCD(a ~ b, b) = GCD(a, a = b)

3.2) if a = b: GCD(a, b)
%.%) if a<b: GCO(a, b)

a=~nb
GCD(a, b — a)

Gco(k - a, b)

1
I

(We can think of other properties, such as

4) forrn>0: GCD(a, b') =GCD(a, b)"
5) for e > O GCD{c * &, c * k) = ¢ * GCD{a, b) ’

but they look less promising as they inwvolve multiplication and we have to

restrict ourselves to the arithmetic operations of additiaon and subtraction.)

The first property states that GCD is a symmetric function. The second
one states that the GCD of two numbers is equal to the GCD of one of them and
the sum, while the third property states this for the difference. Because we
want to restrict ourselves to positive numbers, we have dealt with the cases
a<b and a > b separately. The case a = b, however, is very special: it is

the orly case in which the value of the GCD is given directly!

Relations 2, 3.1 and 3.3 tell us that the QCD of a pair of numbers is
equal to the GCD of another pair of numbers. This suggests that we use the
"current state" to fix sucH a number pair; the algorithm can then try to
change these numbers in such a way that

firstly: the GCD remains comstant

EWD316 - 35

secondly: until eventually the two numbers are equal and zule 3.2

can be applied.

With the second requirement in mind, rule 2 does not look too promising:
given two positive numbers, one of them can never be equal to their sum. On
the other hand, given two (different!) positive numbers, one of them, viz.
the smallest, can he equal to their difference. This suggests that from

3.1 and 3.3 we use:

3.1' if a> b: GCD(a, b) = GCD(a - b, b)
3.3' if a<b: GCD(a, b) = GCD{a, b ~ a)

Now the moment has come to consider our first version of the program:

program 1:
begin integer a, b, gcd;
a:= A; b:= B
while a # b do
if a>b then a:=a - b
else bi= b = a;

gcd:= a3

prirt{A); print(B); print(gcd)

(In this program we have used the well-known alternmative comnective

"if ... then ... else". The canstruction

"if inspection then action! else action2"

causes one of two actions, either actioni or action2 to take place. If
the inspection delivers the value true, actionl will take place {and action2
will be skipped); if the inspection delivers the value false, (action? will
be skipped and) action2 will-take place. We can q§scribe the conditional
connective in terms of it:

"if insbection do action®

is equivalent ta wif inspection then action else nothing" .)

EWD316 ~ 36

When we try to understand this program we should bear the following in mind:
While the typical use of variables manifests itself with the
program loap, the way to understand such a program implies
looking for the relations between their values which remain

invariant during the repetition,

In this example the invariant relation P is

P: a>0 and b > 0 and GCD(a, b) = GCD(A, B) .

The relation P holds after initialization (for then a = A and b = B;

from A > 0 and B > O, relation P then follows).

The repeatable statement will only be executed under the additional
condition a # b; i.e. either a<<b or a > b. If a> b, then the new value of
a, viz. a = b, will again be positive and GCD(a, b} will remain unchanged on
account of 3.1'; if a < b, then the new value of b will again be positive
and GCD{a, b) will remain unchanged on account of 3.3'. The invariance of

relation P is therefore established.

When the loap terminates, a = b is guaranteed to hold, GCD{A, B) =
GCD(a, b) = GCD(a, a) and on account of 3.2 the assignment “ged:= a" will
establish the net efiect "ged:= &CD{A, B)".

To complete the proof we must demonstrate that the repetition will
indeed terminate. Whenever the repeatable statement is executed, the largest
of the two {different!) values is decreased by the value of the other which

is positive; as a result

max(a, b) >*max(a, b)T1 .

70
We also know that before the repetition max(a, b) = max(A, B) is finite;

from the invarianmce of the relation P (a >0 and b > 0) we conclude that
max(a, b) > 0

will continue to hold. All values being intsger,.fhe maximum number of times
the repeatable statement cah be executed must be less than max{A, B) and
therefore the repetition must terminate after a finite number of repetitions.

And this completes the proof.

EWD316 - 37

Once we have this program, it is not difficult to think of others.
Reading program! we observe that each subtraction is preceded in time by
two tests, first a # b and then a > b; this seems somewhat wasteful as the
truth of a > b already implies the truth of a £ b. What happens in time is
that & number of times & will be decreased by b, then b will be decreased
a number of times by a, and so on. A program in which (in general) the

number of tests will be smaller is

program 2:

begir integer a, b, gcd;

ai= A; b:= B;

while a # b do

begin while a> b dao a:= a ~ b;
while b> a do h:= b - a

end;

gcd:= a;

print(A); print(B); print(gcd)

end .

Exercise. Prave the correctness of program 2.
Exercise. Rewrite program 2 in such a way that the outer repeatable statement

contains only one locp instead of two. Prove its correctness.

Before going on, it is desirable to give a more formal description
of the kind of thearems that we use. {In the following I shall make use of

a formalism introduced by C.A.R.Hoare.)

lLet P, P1, P2, ... stand for predicates stating a relation between:
values of variables. Let S, 51, 52, ... stand for pieces of program text,
in general affecting values of variables, i.e. changing the current state.
Let B, B1, B2, ... stand for either predicates stating a relation between
values of variables or for pieces of program text evaluating such a predicate,
i.e. delivering one of the values true or false without further affecting

values of variables, i.e. without changing. the current state.

Then P {s} p2

means: "The truth of P1 immediately prior to the execution of S imples the
truth of P2 immediately after that executionm of S". In terms of this formal-

ism we write down the following theorems. (Some readers would prefer to call

- - -

EWD316 ~ 38

some of them rather "axioms" or "postulates", but at present 1 dnn't-parti~

cularly care about the difference,)

Theorem 1:

Given: P1 {51} P2
P2 {s2} P3
Canclusions P1 {51; 52} P3

(This theorem gives the semantic conseguences of the semicolon as connective.)

Theorem 2:

Given: B {5} non B
Conclusion: true {if B do S} EEQIE

(Here "true" is the condition which is satisfied by definition, i.e. the
conclusion that after the execution af the conditional statement "non B" will

hald, is independent of any assumptions about the imitigl state.)

Theorem 3:

Given: (P and B) {S} P
Conclusion: P {if B do 5} P
Theorem 4:
Given: {Pt and B) {s1} P2
(P1 and non B) {s2} P2
Conclusion: P1 {if B then S! else 52} P2
Theorem 5:
Given: (P‘ggg B) {5}’P
Eonclusion: P !while B do S} (P and non B)

Remark: This theorem only applies to the case that the repetition terminates,

ptherwise it is void.

Thearem 5 is one of the most useful theorems when dealing with loops.
.The appropriate reasoning meﬁhanism to deal with!loops is mathematical in-
duction, but often the use of Theorem 5 (which itself can anly be proved by
mathematical induction) avoids a direct use of mathematical induction.

We used Theorem 5 when proving the correctness of program 1. Here was

EWD316 - 39

P: a>0andb>0 and GED(a, b) = GCD(A, B) and
B: a # b .

We draw sttention to the fact that we could not show "P {S} P" but
only "(P_ggg B) iS} P": for @ and b to remain positive it was necessary to
know that initially they were different,. (How is this with program 27) We
also draw attemtion to the fact that after termination, when we wished to
show that a = GCD(A, B), we did not only use the mild conclusion "P" hut
the strong conclusion "P and non B": we need the knowledge that a = b

in order to justify the application of 3.2.

With respect to termination one often uses a somewhat stronger

theorem, the formulation of which falls outside the strict Hoare formalism:

Theorem 6:

Given: (P and B) {5} P
Conclusion: in P iwhile B do S} the relation (P and B) will

hold immediately after each executian of the repeatable
statement that is not its last execution.
This theorsm often plays a role when deriving a contradiction from the

agsumption that the loop will not terminate.

There is an alternative form of repetition control which might be

?EPIBSEHtEd by "repeat S until BY

{other authors write "do 5 until B')}; it is ‘semantically equivalent to
"S; while non B do 5"

(Instead of describing its semantics in terms of the other repetitive con-

nective, we could also .have given a recursive definition in terms of itself,

Lz "G; if non B do repeat S until B' .)
The differences with the while-clause are:

1) the termination condition has been inverted

2) the repeatable statement is executed at least once.

' Sometimes the repeat-clause comes in really handy and the text sometimes

gains in clarity when it is used. It should be used with great caution,a

EWD316 ~ 40

citlion which iy shown by the pertinent
Thnorym T:
Given: P ‘S] P2

{(f2 and non B) {5} P2
Conclusion: P1 {regeat S until B} (P2 and B)
Remark: This theorem only applies to the case that the repstition terminates,

otherwise it is void.

The greater complexity of the assumptions about B and 5 which have to
be verified reflects the additionmal care required in the use of the repeat-

clause.

Exercise. We now give three tentative alternative programs (3, 4 and 5) far
the computation of GCD(A, B). Discaver which of them are correct amd which
are faulty by trying to prove their correctness. If the program is incorrect,

construct an A-B-pair for which it fails.,

program 3:

begin integer a, b, ged;

a:= A; bh:= B;

repeat if a > b then ai= a - b
glse bi=b - a

until a = bj

ged:= a;

print{A}; print(B); print(ged)

program 4:

begin integer a, b, gcd;

a:= A; b:= B;
repeat while @ > b do a:= a - b;

while b > a do bi= b - &

end

program 5:

begin integer a, b, ged, x;

a:= A; h:= B;
while a # b dg
"begin if 2 <b do begin x:= a; a:= b; b:= x end;
repeat a:= a -~ b until a<b
end; |
gcd:= a;
print{A); print{B); print(gecd)

end

EWD316 — 41

(Note. If any of the above programs is correct, its occurrence in this

exercise is not to be interpreted as a recommendation of

its style!)

Exercise. Prove that the following program will print in addition to the

greatest common divisor of A and B the smallest common mul

tiple of A and B

(being defined as their product divided by the greatest common divisor).

begin integer &, b, c, d, gcd, scmy

a:= A; b:= B; ci= B; d:i= O;
while & # b do

begin while a > b do begin a:= a — b; di= d + ¢ end;

while b > a do beqin bi= h - a; ct

il
il

end;

Iy

gcd:= a; scm:= r + dj
print(A); print(B); print{ged); print{scm)
end
Hint., Follow the value of the expression a ¥ c + b * d

Software Sciences Holdings Limited, Lendon)

* *

For a meaningful loop controlled by a while—clause

following further observations. Let is consider the loap

Our first observation is that the execution of the

must change the state. Suppose that it does mot. If then

c t+ dend

. (Courtesy

we can make the

"while B do S".

repeatable statement

the repeatable

statement is executed orce, the predicate B (that was true prior to its

execdticn) will still be true after its execution, so that the statement S

will be executed yet another time; then the argument can

be repeated and the

CEWD316 - 42

net result is that the repetitiun w1ll not" terminate. The only termlnatlon
occurs when B 'is false to begin with: then the statement S will be axecuted

zero times. This we don't call "a meaningful lGDp".

S0, execution of stétement S changes the state: let us call "sﬁ that
part of the total state that may be changed by the execution of étatément 3.
Here "s" can be regarded as the aggregate'nf_uariabies whose valués caﬁ'bé
affected by the execution Df-statément 8. Then our gécond'observatioﬁ is .that
(ome or more variables of) s ﬁust be.involved.in thé predicate B. If not, a
single execution of %he-repeatable statement would imply infinitely many
(by the same argument as used in our previous observation). Treating “s"
as a generalized variable, we can axpresa this axplicitly by rewriting the

loop, USlng twg functions of the generalized argument s:

"while B(s) gg st= §{s)"

This is the basic form of every repetition which is cbhtrolled by a
while—clause. Reading it, it is obvious that its behaviour is undefined when
the initial value of s is completely undefined. In terms of programming this

leads to our third ohservation:

Every repetition controlled by a while-clause requires a
proper initialization of the variables involved.
(Altﬁaugh obvious, this rule is mentioned explicitly, because 1 have
SEEN mény programmers forgetting to initialize properly. The rule is so
rigid that such an omission is not a mistake but a blunder.)

Let the initial state be denoted by s. and let the state immediately

0
after the i~th execution of the repeatable statement be denoted by s. let
the loop terminate after the k—th execution of the repeatable statement. Then

the following theorems hold.

Theorem 8:
Given o the remaining successive values of s are given by the recurrence

relation s, = S(si-'-1) for 0<1i<k.

Theorem 9:
In the sequence s evs 5 5 1 nO two values (with different subscripts)

are equal.

EWD316 - 43

Theorem 10:
B(Si) for all i satisfying 0 < i <<k and

‘mon B(Sk) .

Theorem 8 is fairly obvious. It is mentioned, however, because it
shows that a repetition is an adequate tool for the evaluation of a recurrence
relation. Theorem 9 is mentioned because it is so obviously correct {although
I see at present no use for it.) Theorem 10 -alss called "The Linear Search
Theorem" -~which is also fairly obvious, is a very important one,.comparable
in importance to Theorem 5. It does not only assert that after termination
the state sk will he such that non B is valid, it asserts thst in all
previous stateg S5 with i < k (if any) B did hold. This theorem is used in
many searching algorithms looking for the smallest number for which a
predicate B is false: hy inspecting the numbers in the order of increasing
magnitude, the smallest becomes the first found. Theorem 10 tells us that
in that case a loop controlled by a while clause is a proper vehicle. (It

is not restricted to looking for a smallest number, it can he applied to

any (somehow) ordered set of values of some sort.)

Remark .We have called the last thres theorems "obvicus". This is not meant
to imply that giving a reasonably formal proof for them is trivisl. I did

it, but the resulting proofs were surprisingly cumbersame and boring.

Finally, in Theorems 2, 3 and 5 we always have assumptions including
the truth of B prior to the execution of S. Clearly we are rot interested
in the net effect of the execution of S after am initial state in which B
is false. As a matter of fact, with such initial states the net effect of
an 5 will often be undefined. (A similar remark canm be made regarding Thecrem
4.} In other words: our statements 5 regarded as operatcrs are often not
defined on the domain of all possible states,'théy are "partial operators"
and the predicates occurring in the clauses ensure that they will not be
evoked inappropriately. This.observation should temper our hape of increasing

computation speed by introducing more parallelism.

EWD316 - 44

Programs corresponding tp recurrence relations.,

Thearem 8 mentions successive states connected by a recurrsnce relation.
The meaning of this theorem is twofold: it can be used to prove assertions
abouf a given program, but also —and this, I think, is more important- it
suggests to us, when faced with the task of making a program, the use of 2
while—clause in the case of a problem that in its mathematical formulation
presents itself as the evaluation of a recurrence relation. We sre going to

illustrate this by a number of examples.

Cansider the sequence of pairs a,, c, given by
i

for i = 0 3y = ! ' : (1)

cg =175, with 0 <b <2 (i.e. abs(co) < 1)
S = *

for 1 >0 a; (1 + Ci—1) a, (2)

C 2 _
i~ TiAt)

Then lim a, = 1/b

i—seo *

Exercise.Prove the last formula. (This has nothing to do with programming,
it is secondary schoal algebra. The clue of a proof can be found in the

relation 1 1 +c.
= 1"‘1)
1 - ¢, 1 - e, :
i-1 i

It is requested to use this recurrence relation to approximate the
value of 1/b ; obviously we cannot compute infinitely many elements of the

0! 91, UL but we can accept ak as a sufficiently close
(how close?) approximation of 1/b when C\ is less (in absolute value)

than a given, small, positive tolerance named "eps", (This example is of

sequence 8 a

historical interest; it has been taken from the subroutine library for
EDSAC 1, the world's first stored program controlled automatic computer.
The order code of this computer did not comprise a divide instructien and
orme of the methads used with this computer to compute gquotients was based

an the above recurrence relation.)

Theorem B talks about “a part, s, of the state space"” and the loop
while H(s) do s:= 5(s)

asserts that after the initial state g the states N after the i-th

execution of the repeatable statement will satisfy

EWD316 — 45

s, = 5(s,_,))

Our recurrence relations (2) are exactly of the form (3) if we identify
the state s; with the value pair arc. That is, to span the part s of the
state space we have to introduce two variables, for the purpose of this
discussion called A and C, and we shall denote their values after the i-th
execution of the repeatable statement Ai and Ci respectively. We associate
the state o (as given by the values Ai and Ci) with the value peir ay c.

by the relations
y A, = a, (4)
i i
C.=c

i i

(Hemember: on the left—hand sides the subscript "i'" means "the value
of the variable after the i-th execution of the repeatable statement", on
the right—hand sides the subscript "i" refers to the recurrent seguences as
given by (1) and (2). It would have been usual to call the twn variables "a"
and "c" instead of "A" and "C", i.e. not to distinguish between the quantities
defined in the mathematical formulation on the one band and the associated
variables in the program an the other hand. As this association is the very
subject of this discussion, it would have been fatal not to distinguish

between them.)

Withim the scope of a declaration "real A, C", it is now a straightforward

task to write the piece of program:

A:=1; Ci= 1 - b
while abs(C) > eps do
begin A:= (1 + C)* A;

E::C*C

The first line has to create the proper state 55 and does so in
accordance with (4) and (1), the repéatable statement has the form, symbolically
denoted by "s:= S(s)" ~see the Note below— in accordance with (4) and (2);

and the condition guarantees that after termination

(Ak=) A= a

will hold with the proper value of k.

EWD316 ~ 46

Exercise. Prove that the loop terminates.

Note. The symbolic assignment "s:= S(s)" has the form of two assignments

A= (1 + C)* A;
C:=C *C .
Witk the initiel condition A = A C = iy the first assignment is

equivalent to

)* a,

e— +
Ar= (1 +c,_ -

i-1
and after the first, but before the second assignmert we have —on account

of (2)~ A=a C=o=c
I T Ti-

We have the complete pair A = a C = c. only after the second assignment,
Thanks to the explicit occcurrence of the subscripts, the order of the two
relations composing (2) is immaterial, this in contrast to the two assignment

statements composing the repeatable statemeni, whose order is vital.

Exercise. In the same EDSAC 1 subroutine library the next scheme is used.

Consider ths sequence of pairs ai, c., given by
1

for i = O aO =b

co=1-b, withO<b<2 (i.e. abs(co) <1)
for i > 1 a.=(1+.5%c. J*a,

i 5 i1 i1
— >+ *

Ci = C._y (.75 + .25 Ci-1) .
Then lim a. = b'5 .

i—co *

Prove the last formula and make a program using it for the approximation of
the square root. The clue of a proof can be found in the relation

-.5)-.5

(1 - ¢

) TS xe) *‘(1 !

Prove also the termination of the repetition in the program made.

Exercise. In the same EDSAC 1 subroutine library the next scheme is used.

Consider the sequence aof triples inci, S Xy given by

EWD316 - 47

for i = O incO = log 2
5. = O
Xy = arg (with 1 < arg < 2)
for i > 0
for x? <2 inc, = .5 * inc,
i1 i i-1
s1 = si-1
x, = x2
i7" Ti-1
far x2 > 2 inc, = .5 * inc
i=-1 — i ‘ i-1
s, = s, + .5 * inc.
i i=1 5 i=1
X. = .5 * X, .
i i-1
Then lim s. = lng(arg) .
i=—eco * ’ '

Prave this relation and make a program using it to approximate the loagarithm
of a vaiue arg in the interval stated. (In this program "lag 2") may be
rega;dea a5 a knawn constant which, in fact, determines the base of the
logarithm.) The clue of a proof can ba.found in the invariance of the

relation log{arg) = s, + inci * log(xi) / log 2 .

Our next example is very simple; it is so traditional that we could
call it standard. (No self-respecting programming course omits it, it is
often the very first example of a laop; Peter Naur uses it in his article

"Proof of algorithms by genmeral snapshots", 1966, BIT, 6, pp 310-316.)

Given a sequence of values
a[1], a[2], a{3], ..., &[N] (with N >1)

and a variable called "max"™. Make a pilece of program assigning to the
variable named "max" the maximum value accurring in the saquence. (As

N-> 1, the sequence is not empty and fherefnre the task makes sense; it

is not required that any two values in. the sequernce differ from eachother,
the maximum value sought may accur more than once.in the sequence.) If he
welcomes the experience the reader is invited to. try to make this piece of

program himself before reading on.

" How do we define the maximum value occurring inm a sequence of length

N for general N > 1 ? If we call "maximum " the maximum value occurring among

EWD316 - 48

the first k elements a[l], cee a[k], then

1) the answer sought is maximum
2) the values maximumk are given
for k = 1 by the base: maximum, = al 1] {5)

appealing to the knowledge that the maximum element in a
sequence of length 1 must be the only element opccurring in
the sequence
for k > 1 by the recurrerce reglation:
maximum = MAX(maximumk*1, a[k]) . (6)

k
assuming the knowledge of the function MAX of two arguments.

The recurresnce relation (6) presents us with an additional difficulty

because it is not af the form

Sl = 5(51_1)

because -via "a[k]"— the value k occurs or the right-hand side not exclusively

in the subscript "k=1". To overcome this we use a trick that might be called

a method. If we call nk the k—th natural number, then M = k; the numbers
n. satisfy the obvious recurrence relation " = T+ Mmy We can naw
rewrite the definition for the sequence of values maximumk in the form of

a definition for the pairs n , maximum :

k k
for k = 1 n, = 1

maximum1 = a 1] (7)
> = + n
for k = 1 N, 1 k=1 _
. _ . +
maximurm = MAX(max1mumk_1, 3[1 nk_1]) (8)
and now the recurrence relations are of the form 5, = S(Si_1), the only

~trivial- difference being that in Theorem 8 we started with i = 0 and .
here with k = 1, The trick we called a method shows that we need a second

(integer) variable; call it "m", Our state s; will associate {with k = i + 1)

max, = maximum

The piece of program now becomes:

max:= 5[1]; mi= 1;
while m < N do begin m:i=m + 1;
max := MAX(max, a[m])

end .

EWD316 = 49

Again the order of the two assignment statements is essential.

We have given the above piecé of reasaning and the explicit reference
to the recurrence relation of Theoresm 8 because it shows a mechanism leading
to the conclusion that the part of the state space on which the repetitian
operates needs to comprise an sdditional variable. Even a moderately trained.
programmer draws this conclusion "intuitively" and from now onwards I shall
assume my reader equipped with that intuition. Then ~and only then!- there
is a much shorter path of reasoning that leads to the program we found.

It does not consider +"statically" so to speak— the seguence of values

Sor Sqr ee in the sense that it bothers about the values of the subscript

i inm si. It appeals directly to Theorems 5 and & and works in terms of
assertions valid (before and after) any execution of the repeatable statement.

The price to be paid for this is the duty to prove termination separately.

Given the base
k = 1 maximum1 = a[1]
and the step

| 1T <k<N maximumk = MAX(maximumk__1 , a[k])

the programmer "intuitively" introduces two variables which he calls

“maximum" and “k" for short and the relation to be kept invariant is

P: 1€k <N and maximum = rna:-u'.rm.m-lk .
(Here any use of "maximum" and "k" stands for the current value of the
variable thus named, while "maximumk" stands for the value as given by the

recurrence relation., This double use of the same names is tricky but

programmers do it. I too,)

The program then consists of twa parts: establishing relastion P in
accordance with the base and repestedly increasing k urder invariance of

relation P, i.e. in accordance with the'step.

The initialization
"maximum:= a[T]; k= t

establishes P (with k = 1), the repetition

EWD316 - 50

while k < N do
begin k:= k + 1;
maximum:= MAX(maximum, a[k])

end

causes the repeatable statement to be executed under the combined relation

"B and P", i.e.

k<Nad1<k=<N and maximum = rn::'lximumk

which reduces tao

1 <k <N and maximum = maximumk . (9)

In order to show that thes execution of the repeatabie statement
under the initial condition (9) leaves relation P valid, it is desirable
to distinguish bétween the values before and after its execution; naw it
would be confusing to do so with subscripts (why?), therefors ‘we distinguish

the values after execution by primes.

Initially we have relation (9); after the assignment k:= k + 1 we
" have the relation k' = k + 1 and from the first part of (9), i.e, 1 <k <N,

follows 2 < k' <N, which implies
1<k'<N . (10)

The second assignment now becomes effectively maximum:= MAX(maximumk, a[k']),

resulting in the relation
maximum' = maximumk, . (11)
Relations (10) and (11) combine to a replica of P, but now for the primed

quantities.

Termination follows fraom the fact that each execution aof the repeatable
statement involves an effective increase of the integer values variable k.

After termination we have, according to Theorem 5, "P and non B", i.e.
1<k <N and maximum = maximumk and nan k < N;

from the first and_. the last term we conclude k = N and then from the middle part
maximum = maximumN

which concludes the proof.

EWD316 - 51

Exercise. Make a program effectively assigning M"prod:= X * Y" with integer
¥ and Y, satisfying X> 0, Y= 0

a) using anly addition and subtraction

b) using in addition the boolean function "odd(x)", doubling and halving

of a number. (The so—called Egyptian multiplication.)

Exercise. Make a program effectively assigning "rem:= REM(X, Y)" with
integer X and Y, X > 0, Y > 0, where the function REM(X, Y) is the remainder
after division of X by Y

a) using only addition and subtraction

b) using in addition doubling and halving of a number, Modify both
programs in such a way that in addition "quot:= QUOT(X, Y)" will take place.

(The so—called Chinese division.)

We conclude this secticn by an example of the (standard) circumstance
in which a recurrence relation should not be translated blindly into a loop.

Given two seguences of values

x[1], x[2], ey x[N] and

y[1], y[2], cen s y[N] with N> 0

make a program assigning to the boolean variable named "eq" the value frue
if x[i] = y[i] for all i satisfying 1 <i <N and the valus false if in
that range a value for i exists such that x[i] # y[i]. (The sequences may

be empty, in that case "eq" should get the value true.)

How do we define equality of sequences of length N for general N7
Again by means of a recurrence relation. Let eq, mean "no difference occurs

among the first i pairs"; then the sequence of values eq, is given by

true

il

for i = 0 &qy

for 1 >0 eq, = ed,_, and x[i] = y[;] C

The net effect of the program to be made should be eq:= eq, .

A blind tramslation into initialization followed by repetition would
lead to
eq:= true; i:= O

while i < N do begin i:= i + 1; eq:= (Eq_ggg x[i] = y[i]) end .

EWD316 ~ 52

Although the above program is correct, the fgllowing program, besides

being equally correct, is on the average much more efficient:

eq:= true; i:= O

while 1 < N and eq do begin i:= i + 1§ eqi= (x[i] = y[i]) end

because it terminates the repetition as soon as a difference has been found,

Exercise. Prove the correctress of the second pragram,

EWD316 - 53

A first example of step—-wise program composition.

The little examples dealt with so far are not representstive for the
programs that have to be made: they are several orders of magnitude too small.,
A trained programmer "sees" them at a glance, he can think about them without
pencil and paper. They are of the size of a paragraph, while we have to
deal with programs of the size of a page, a chapter or a book and aventually
-to quote A.Perlis- with programs that no longer fi% into a single programmer's
skull! The composition of such very large programs falls cutside the scope
of this little monograph, hut the very least thing we can do is to show the
reader how to organize his thoughts when composing, say, page-size programs.
If in the following the reader thinks that I am too careful, he should bear
the chapter-size programs im mind. {If he is still unconvinced he should study
a single page program made hy a messy programmer; he will then discover that
even a single page has room enough for a disgusting and intellectually
unhealthy amount of unmastered complexity!)

Here we go. Consider sequences composed of 1's, 2's and 3's which
contain only pairs of different adjoininmg non-empty subsequences, Examples
of good sequences are

1

12

12312

3212321
Examples of bad sequences are

11

12323131

32132132132 .

In all probability the list of good sequences is infinite. The problem
is mow: given that there is at least one good sequence of length 100 (i.e.
consisting of 100 digits), make a program generafing the beginning of this
list of good sequences in alphabetical order up to and including the first
sequence of length 100. (AlpHabetical order under the convention that the
1 precedes the 2 and the 2 precedes the 3; the criterion can be tramslated
into a numerical ore by putfing a decimal point in front of the sequence and

then‘interpreting the sequence as a decimal fraction. With that convention

alphabetical order is the arder of increasing magnitude.)

EWD316 - 54

I have used this example extensively in oral examinations. After some
initial skirmishes, most students discovered for themselves
1) that a bad seguence could never be made into a good one by extanding
it, i.e. all good sequences are either a one-digit sequence or a one-~digit
extenéion cf & good sequence
2) if sequence B is a good one-digit extension of sequence A, sequence
A precedes sequence B in the alphabetical corder, i.e. a goad sequence is
followed by all its possible extensions
3) the alphabetical order requires that the good sequence A will first
he followed by its ektensions starting with a 1 (if any), then by those

starting with a 2 (if any) and then by those starting with a 3 (if any).

These observations lead to the following rule:

a good sequence should be printed and extended with a 1 as a next trial
sequence; from a bad sequence, terminal 3's (if any) should be removed and
the final digit {(now % %) should be increased by 1, giving the next trial

sequence.

The heginning of the list to be generated is:
1

12

121

1213

f2131

121312

1213121

1213123

by searching the following list of trial sequences (omitting the ones marked

by *)

12
121

* 1211
* 1212
1213

12131

EWD316 ~ 55

* 121311
121312
12131 21

* 12131011

* 12131212

* 12131213
* - 1213122
1213123

s e s hae

Many of them suggested a program of the following structure.

program 1:
SET SEQUENCE YD ONE AND LENGTH TO ONE;
repeat if GOOD then begin PRINT; EXTEND WITH ONE end
else ADJSUST
until length > 100

in which the primitive "EXTEND WITH ONE" extends the given sequence with a
1t and the primitive "ADJUST" increases the last digit by 1 after removal of
terminal 3's, if any. (Fur the operation "ADJUST" to be defined, the sequence

remaining after removal of termimal 3's must not be empty; this follows from

‘the fact that the list to be produced is known to contain a sequence of

length = 100.)

A number of objections can be raised against a program made alang the
lines sketched. One Dbjectiﬁn is that at the begirning of the execution of
the repeatable statement the lemgth will be < 100, and furthermore we know
that the aperation "ADJUST" will never increase the length; nevertheless
each adjustment is followed in time by a test on the length, and the first
objection is therefore that these tests are superfluous. A more serious
objection is to be found in the tortuous reasoning required to establish
that the end condition is all right. Instead of stopping when for the
first time a solution of length 100 has been printed, it will stop when
the first trial sequence of length > 100 has been generated. It is clear that
the above program will never produce a solution iarger than 100 because
such a long trial sequencé will never be subjected to the test "GOOQD". To
show, however, that it will stop after the production of the first solution

of length = 100 is much harder.

EWD316 - 56

A much nicer program is hased upon the observation that we can regard

the empty sequence as a virtual solution which does not need to be printed.

program 2:
SET SEQUENCE EMPTY AND LENGTH TO ZERD;
- repeat EXTEND WITH GNE;
while non GDOD do ADJUST;
PRINT"
until length = 100,

The objectiors raised are no longer valid. The true reason, however,
why the above program is s@ much more attractive, is to be found in the
observation that we can mentally combine the first two statements of the

repeatable statement. The above version is a refinement af the more sbstract

program 3:
SET SEQUENCE EMPTY AND LENGTH TO ZERO;
repeat TRANSFORM SEQUENCE INTD NEXT SOLUTION;
PRINT

urttil length = 100.

(Note. In programs 1, 2 and 3 the cuter repetitign could also have been

controlled by a while clause.)

Observe that here, in program 3, we have a level of description from
which the trial sequences have disappeared! It is a level of description
which can be understaod in terms of solutions only. By distinguishing, i.e,
by mentally isclating the opsrator "TRANSFORM SEQUENCE INTO NEXT SOLUTION"
and postponing its refinement, we have separated the task of fqrmulating
the correct criterian for termination from how the transition from one
splution to the next will be performed via a number of trial seguences
which may be rejected. Remembering the limited size of the programmer's
skull, this separation is a vital achievement, as it enables us to deal

with ane thing at a time.

To show that all this is not just idle playing with words we shall
proceed from program 3 as our starting point, refining from there onwards.
By way of surprise we shall arrive at a refinement different from program

2, again without essentially changing the algorithm. (Although I had used

this example extensively in examinations, the mext version only occurred to

EWD316 - 57

me when writing this very text! This is just to show that such abstract

programs are vital stepping stones in our process of constructive reasoning!)

To find this refinement we take a step backwards, asking ourselves
what enabled us to make the transition from program 1 to program 2. It was
the introduction of the empty sequence as "virtual soiution". In program 1,
the. first solution.was given, while the others were generated; in program
2 and 3, all solutions to be printed are generated by the same aoperator

"TRANSFORM SEQUENCE INTO NEXT SOLUTION".

When refining this operator the trial sequences have to be'generated,
and in program 2 we find that the criterion "GDOD" has to be applied to
trial sequences generated in two different ways, either by "EXTEND WITH
DNE"™ or by "ADJUST". Can we clean up our refinement by insisting that
all trial sequences to be tested are generated by the same aoperator? Yes
we can, by slightly changing the extermsion operator and slightly generalizing

the operater "ADJUST", as in the following refinement.

TRANSFORM SEQUENCE INTO NEXT SOLUTION:
EXTEND WITH ZERO;

repeat ADJUST until GOOD .

Here "GODD" stands for a rather complicated function; an alternative
form uses the boclean variable "good" and leaves us with the task of refining

the aperator "SET GOOD".

TRANSFORM SEQUENCE INTO NEXT SOLUTION:
boolean gnod;
EXTEND WITH ZERO;
repeat ADJUST; SET GODD until good .

(Note. In the above refinement the repetition is not to be controlled by a

while—clause. Why?)

Now the time has come to make a decision on the represantation of
"sequence". It has a property "length", now satisfying the inequalities‘
0 < length <100 and is an ordered sequence of léﬁgth digits. An appropriate
vehicle for representing this sequence is (part of) a linear array of

inteder variables. We suggest declaring an integer array d[1:100], such

that at any moment the sequence will be represented by

EWD316 ~ 58

d[1], d[2], ... , dliength] .

We would like ta point out that this is a well-motivated decision.

An alternative representation would have been
d[101 - iength], a[102 - length], ... , d[100]

but with the latter convertion all operations changing the length of the
sequence would imply moving the values upwards ar downwards, whereas with

the suggested representation, the values being kept can “stay where they

are". Whem the chosen canventionm is made to apply to all sequences manipulated
{i.e. to solutions as well as to trial sequemces) the following four
refinements are fairly obvious. (As far as they are concerred, the chosen

representation is certainly adequate.)

SET SEQUENCE EMPTY AND LENGTH TO ZERO:
length:= O

EXTEND WITH ZERD:
length:= length + 13 d[length]:: 0

ADJUST :
while d{length] = 3 do length:= length — 13
d[length]:= d[length] + 1

PRINT:

i:= Q; repeat i:= i *1; printdigit(d[i]) until i = length; newline

where we have assumed the availability of the primitives "printdigit" and
Whewline® for the transition to the beginning of the next line of output.

The only refinement which can still cause headaches is the cperator "SET GOOD".

To investigate an arbitrary sequence is indeed a gruesomé tagk, but
it bescomes much easier if we exploit the circumstance that the only sequences
to be subjected to the test are trial sequences, and each trial sequence is
a one—digit extension of an (Earlier) good sequence. As a regult it can only
viplate the condition if its terminal Blement.is included in one of the
subsequences, i.e. it has to be rejected as bad if there exists an m

(satisfying 0 <2 * m fglength) such that the pair of adjoining "msequences”

d[length - 2 * m + 1], ..., dllength - m] and
d[length = m + 1], ... , d[length]

are equal. Assuming the availability of the operstor needed to compare the

EwD316 - 59

msequences of this pair (fnr arbitrary, given m), our first refinement of

"3ET GOOD" is
SET GODD:
integer m;

good:= true; m:= 1;
while 2 * m < length and good do
begin GIVE GOOD THE MEANING THAT THE MSEQUENCES DIFFER;

mi=m + 1

or {probably better)

SET GDOD:

integer m, mbound;

good:= true; mbound:= length div 2; m:= 1;

while m < mbound and good do

begin GIVE GODOD THE MEANING THAT THE MSEQUENCES DIFFER;
mi=m + 1

end .

Here the operastor div is the integer divide, rounding aoff the guotient
to the nearest integer towards zero. The double condition for continuing the
repetition expresses that the investigation can be stopped as soon as an
equal pair has been found, as this is sufficient to establish its being bad.

We have seen this construction at the end of the previous section.

Question. An alternative form would have been

integer m;

good:= true; m:= length div 2;

while m > 0 and good do

begin GIVE GOOD THE MEANING THAT THE MSEQUENCES DIFFER;
me:=m = 1

end .

Why do we propose to do the investigation in the order of increasing m?

Finally we refine the comparison of two msequences

EWD316 ~ 60

GIVE GOCD THE MEANING THAT THE MSEQUENCES DIFFER;:
integer firstend, k;
firstend:= length - m; k:= O;
repeat good:= (d[length - k] # d[Firstend - k]);
' ki= k + 1

until k = m or good

again expressing that the comparison of the two msequences can be terminated

as soon as it has been established that they differ somewhere.

Collecting the declarations and inserting the refinements -keeping
their names as labels for explicative purposes— we arrive at the complete
program as shown on the next page. The successive levels of detail have been

indicated by systematic use of indentation.

* *

Exercise.

Given a linear array of 36 positions, make a program generating all
ways (if any) in which these positions can be filled with zeros and ones
(Dne digit per position), such that the %2 gquintuples of five adjoining
positions present the %2 different patterns of five bimary digits, restricting
ourselves to sequences starting with five zeros. C.Ligtmans has shown that
any such solution must end with four zeras,., His argument is as follows. Each
solution must start with 000001 ..., because the pattern 00000 may occur
only once. Somewhere in the sequence the pattern 10000 must occur once; as
this pattern can only be followed by a O or a 1, its "following" quintuple
must be either 00000 or 00001, presented already by the first two quintuples.
As a result the pattern 10000 cannot sccur in the interior of the linear
sequence and therefore it must be the rightmost pattern. From Ligtmans'
observation it follows that we can close the ring, making the last four
zeros averlap with the four imitial zeros. The different patterns are then
arranged in a cycle of 32 positions.

The patterns have to be generated in alphabetical order.

Discussion and some hints.
I take for granted thét, given a sequence of 36 binary digits, the
boolean function stating whether this sequence represents a solution is

computablé, and that we could write an algorithm computing it. In principle

beqin integer array aﬁa"dooun boolean good; integer length, i, w, mbound, k, firstend;

SET SEQUENCE EMPTY AND LENGTH TO ZERD:
length:= 0O; .
repeat TRANSFORM SEQUENCE INTO NEXT SOLUTION:
EXTEND WITH ZERD:
length:= length + 1; amwm:mwru"n 0;
repeat ADJUST:
while aﬁwmjawru = 3 do length:= length = 1;
amwmjmﬁruun nﬁwmjuﬂru +1;
SET GOOD:

good:= true; m:= 1; mbound:= length div 2;

while m < mbound and good do

begin GIVE GOOD THE MEANING THAT THE MSEQUENCES DIFFER:

.

firstend:= length - m; k:= O;
repeat good:= maﬁwmjmwr - ru K nﬁwWHmdmaa - xuv“
k:i= k + 1

until k = m gr good;

mi=m + 1

end

until good;

PRINT:

i:= 0; repeat ir= i + 1; UHH:&&R@%ﬁAQﬁHQv until i = length; newline

00

Il
-

until length

19 - 91¢am3

EWD316 - 62

Qe could write a program generating all 36-digit sequences with five- leading
zeros in alphabetical order and subjecting all thése sequences to the test
just mentianed, thereby selecting those satisfying the test. This gives a
very unrealistic program and we shall not.pursue itjlwe only remark -that
generéting the trial sequences in alphaﬁetical order will ensure that the

solutions, when found, will be found in alphabetical order as well.

The program to be made could be regarded as a derivation from the
ridiculous one sketched above, viz, by the introduction of some significanmt

short cuts. At present we shall not stress this relation any further.

Instead of generating all 36*digit sequences and selecting from this
set, we aim at generating only a much smaller set which is guaranteed to '
contain.all solﬁtians. Let us define as "lengfh of a sequence" the number of
quintuples it contains (i.e. length = number of digits - 4). Let us call a
sequence "acceptahle" if no two different QUintuplESIin it present the same
digit pattern. With these definitions the so;utions are a subset of the set

of acceptable sequences, viz. those with length = 32.

We do not know whether there are any solutions at all but we do know
that the set of acceptable sequences is non—empty (e.g. "00000"); we do not
have a ready—made criterion to recognize "the last sglutian™ whem‘we encounter
it; inm our set of acceptable sequemces, however, we can desigrate '8 virtual
last Dﬁe {viz. "0O0001"}; when that one is encountered we knmow that all
acceptable sequences with five leading zeraos have been scanned and that no

further solutions will be found.

Summarizing, we know of the set of acceptable sequences:

it is non—empty and finite

)
2) we know a first member ("00000")
3) " we know a virtual last ‘member (r10000")
4) we éan transform an acceptable‘sequEHCE'infu the next acceptable sequence
5) solutions are all acceptable sequences satisfying the further conditian
length = 32 ' '
6) no extension of a sequence that is not acceptable will be acceptable.

" The last property mekes this problem mathematically épeaking VELY

similar to the previous one.

EWD316 -~ 63
Hint. The test for acceptability can be speeded up considerably by tabulating
which quintuples are to be found in the sequence, '

Remark. This problem is difficult and it will tske you many hours to produce

a beautiful program. But these hours will be extremely well=spent.

EWD316 - 64

The shortest spanning subtree of a graph.

‘I have chosen the following example for a variety of reasons, Firstly,
although the final program is rather short, the solution is far from trivial.
Secondly, our true subject matter is "structure" rather than straightforward
numerical material, and as a result, the decisions taken to represent the
information (using numerical values) are more manifest, Finally it presents

us with a type of strategic decisions which are typical.

Two points can be connected by one point—to~point connection; three
points can be connected with eachother by fwo point=to—point connections;
in genmeral N points can be fully interconnected by N-1 point—to-point
connections. Such a set of intercomnections is called a "tree"; the point-
to-point comnections that constitute the tree are called "its branches".
Cayley has been the first to prove that the number of possible trees between

N points equals NN-Z.

We now assume that for each possible branch the lemgth has been given.
Defining the length of a tree as the sum of the lengths of its branches, we
can ask for the shortest tree between those N points. (For the time being we
assume that the given lengtbs are such that the shortest tree is unique. From
our analysis it will follow that no two branches of equal length is a

sufficient condition for this assumption.)

Note. The points don't need to lie in a Euclidean plane, nor do the given

distances need to satisfy the triangle inequality.

An apparently straightforward solution would generate all trees between
the N points, compute their lengths and select the shortest one, but Cayley's
theorem shows that this would become very expensive as N increases. The
following theorem enables us to find the shcrfesf tree with considerably less
work. Given a subtree of the shortest tree, then the shortest branch that can
be found between one of the points touched by this subtree and one of the
points not touched by this subtree will be part of the shortest tree between

all N points,

This theorem is easily proved. Colour the branches of the subtree and

EWD316 ~ 65

all points connected by it red; colour all the remaining points blue and
colour all branches leading from a red point to a blue ome violet. The
theorem asserts that the shortest violet branch is part of the shortest tree
as well. Call this shortest violet branch V and assume that it is not part
of the shortest tree T; we shall then construct a tree T! which is shorter
than T, thus arriving at a comtradiction. Add to the tree T the violet hranch
V; in the resulting graph the violet branch must be contained in a2 closed
loop. As this violet branch connects a red point with a blue one, it is
clear that, going around the loop, we must find at least one other violet
branch in this loop. Call this V' and remove V'. The resulting graph has
again N-1 branches; it connects all N ﬁoint (we have removed a branch fram

a loop) and therefare it is a tree connecting all N points. Call it T'.

From T' =T +V - V' follows:

length(T') = length(T) + length(V) - length{V') .
As V was the sortest vialet branch, we bave

length(V) < length(v'},
so that

length(T}) <:length(T)

i.e. the tree T cannot have been the shortest one.

The above theorem tells us that a red subtree of the shortest tree T
can be extended with a point and the branch leading to it: the shortest
vialet brarmch and the blue point it leads to can be coloured red. As a
result, if we can find a red subtree to start with, we can let it grow by
one branch at a time. But it is wvery easy to start with a red subtree, viz.
the red subtree consisting of a single point (any point will do) and na
branches. Starting from the subtree we can let it grow to the shortest tree
in N=-1 steps, each step adding a new red branch and a new red point to it.

We can repressnt the framework of this algorithm as follows:

COLOUR ONE POINT RED AND THE REMAINING ONES BLUE;
while NUMBER OF RED PDINTS < N do ”
begin SELECT SHORTEST VIOLET BRANCH;
‘ COLOUR IT AND ITS BLUE ENDPOINT RED

end.

EWD316 - 66

As it stands, the main task will be "SELECT SHORTEST VIOLET BRANCH",
because the number of viglet branches may be quite large, viz. k *(N - k)
where k = NUMBER OF RED POINTS. If "SELECT SHORTEST VIDLET BRANCH" were
an isolated operation, there is not much that could be done about it; in
the ahbove program, however, the operation has to be performed N~1 times in
succession and the successive sets of violet branches are strongly related:
they are the branches between red and blue points and each time only ane
point changes its colour. We would like to exploit this with the aim of
reducing the set of branches from which each time the shartest branch should
be selected: we are looking for a useful subset of the violet branmches. We
still don't know if such a really useful subset exists, but let us assume
for the moment that it can be found and let us call it "ultraviolet". If
such a set exists (Each time) it is only helpful provided that we have a
cheap way of constructing this subset, and our only hope is to be found in
the past history of the computation, for instance the set of ultraviolet
branches used the previous time. This suggests a program of the following

structure:

COLOUR ONE POINT RED AND THE REMAINING ONES BLUE;
CONSTRUCT THE SET OF ULTRAVIOLET BRANCHES;
while NUMBER OF RED POINTS < N do
begin SELECT SHORTEST ULTRAVIOLET BRANCH;
COLOUR IT AND ITS BLUE ENDPOINT RED;
ADJUST THE SET OF ULTRAVIOLET BRANCHES

end

where the set of ultraviolet branches should be defimed in such a way that

1) it is guaranteed to contain the shortest violet branch

2) the set of ultraviolet branches is in general much smaller than the
set called simply violet

3) the operation "ADJUST THE SET OF ULTRAVIOLET BRANCHES" is cheap, for

otherwise the profit we are trying te gair is lost.

Can we find such a definition of the concept "ultraviolei"? Well,

for lack of further knowledge I can only suggest that we try.

Considering that the set of violet branches leading from the k red
points to the N-k blue omes has k *(N — k) members and observing criterion

1, two obvious possible subsets present themselves immediately:

EWD316 ~ 67

1) Make for each red point the sortest violet branch ending in it
ultraviolet. In this case the set of ultraviolet branches has k
members,

2) Make for each blue point the shortest violet branch ending in it
ultraviolet. In this case the set of ultraviolet branches has N-k

members.

Our aim is to keep the ultraviolet subset small, but we won't get a
clue from their size: with the first choice the sizes will run from I
through N-1, with the secuhd chaice it will be the other way round. So, if
there is any chance of deciding we must find it in the price of the

operator "ADJUST THE SET OF ULTRAVIOLET BRANCHES",

W%thout trying the various adjustments of the ultraviolet sets, there
iz one observation which suggests a preference for the second choice. In
the first choice k ultraviolet branches may lead from the red tree to the
same blue point; then we know a priori that at most ome of them will be
coloured red, while with the second choice each blue point is connected in
one way only to the red tree (the sum of the number of red and ultravinolet
branches is them constantly equal to N-1) and it is possible that all
ultraviplet branches at a certain moment will be eventually coloured red
—in which case the adjustment operator was empty but for the removal of the
one made red. Therefore, let us try the secornd choice for the criterion
ultraviolet. {Initially this set comprises the N-1 branches leading fram
the ane red point to the remaining N-1 blue aones, so that presents no

prublem.)

Consider now that we have a red subtree R and that from the corres-
ponding set of ultravioclet branches (according to the second choice =1 shall
no longer repeat that qualification) the shortest branch leading to the
blue point P and the blue point P itself have been coloured red. The number
of ultraviolet branches has been decreased by ‘1 és it should be. Are the
remaining ones the good ones? For each blue point they represent the
shortest connection to the red tree R, and they should represent the
shortest possible connection to the new red tree R + P, But this is settled

by means of a simple comparison for each blue point B: if the branch BF is

t

EwD316 - 68

sharter than the ultraviclet branch connecting B to 8, the latter is'to be
replaced by the branch BP =its colour is washed away and BP is made ultra-
vialet instead—; otherwise it is maintained, as the growth of the red tree
with the point P did not provide a sharter way of connecting B with the
red tree. As a.result the cost of the adjustment operator —which has to
deal with N~k blue points— is a limear function of N and k (and rot
quadratic as k * (N - k)), and the introduction of this concept of ultra-

violet is indeed accomplishing the savings we were hoping for,

Exercise. Convimce yourself that the rejected altermative of the concept

"yltravialet" is not so helpful.

Let us try to represent our algorithm in its current stage of

refinement:

COLOLR ONE PQINT RED AND THE REMAINING ONES BLUE;

CONSTRUCT THE SET OF ULTRAVIQLET BRANCHES;

while NUMBER OF RED POINTS << N do

begin SELECT SHORTEST ULTRAVIOLET BRANCH AND CALL ITS BLUE ENDPOINT F;
COLOUR IT AND POINT P RED;
ADJUST FDR EACH BLUE POINT B BY COMPARING WITH THE BRANCH BP

end .

By now the timz has come to consider the representation of the
information involved. We assume the N paoints numbered from 1 through N, we

assume the length of the branches given by a two-dimensional array
real array distance[1:N, 1:N] '
such that for 1 <i,j <N

distance[i, j] = distance[j, i] =

length of branch connecting the points i and j.

The answer required is a tree of N-1 branches, each bramch being

identified by the numbers of its endpoints; the answer is an (unordered)

set of (unnrdered) pairs of numbers. We can represent them by two arrays

integer array fram, to[1:N-1]

where for heach h satisfying 1 < h < N-1 the pair "from[h], tc[h]"

EWD316 - 69

gives (the numbers of) the endpeoints of the b—th branch. In our final
salution the branches will be numbered (by h); the only ogrder that makes
sense is the order in which they have been coloured red. The observation
made earlier that the total number of branches to be manipulated {red and
ultraviolet tagether) remains constant suggests that we store them in the

Same array:

if k = NUMBER OF RED PQINTS
from h], to[h] will be red for 1 < h <k
fram h], to[h] will be ultraviolet for k < h <N ,

The ultraviolet branches will he represented leading from a red point to
a blue one, The array "length"™ has been introduced in order to reduce the

number of subscriptions to be carried out:
length[h] = distamce[frnm[h], to[h]]

will hold (and will be restored immediately when temporarily inmvalid).

Point N is chosen as the initial point to be coloured red. "SELECT

SHORTEST ULTRAVIOLET BRANCH" is a straighforward search for a minimum value.

"COLOUR IT AND POINT P RED" is done by an interchange in the three arrays
(if necessary), followed by an increase of k. In "ADJUST FOR EACH BLUE
POINT B BY COMPARING WITH THE BRANCH BP", h scans the violet branches,
ta[h] will scan the blue points and len ‘is used to store the lenmgth of

branch BP. The final program is given on the next page.

Exercise.

Let distance[i,j] be the distance from point i to point j in that

direction. As we may have one-way traffic, the relation

distance[i,j].f distanca[j,i]
is then permissible. Make a program finding in the graph the shortest path
leading from point I to point J. This is a difficult exercise, therefore

it is worth trying!

begin integer array from, to ﬁAHZIAgw real array length ﬁA"2|¢gm real len, minlen; integer k, h, minh, p;

COLOUR ONE POINT RED AND THE REMAINING ONES BLUE:
kiz= 1;
CONSTRUCT THE SET OF ULTRAVIOLET BRANCHES:
h:= 1; while h << N do begin mHoaﬁi"n N; waﬁru_nn hs ngm&j_ﬁru_nu distance[N,h]; h:= h + 1 end;

while k <N do
beqgin SELECT SHORTEST ULTRAVIOLET BRANCH AND CALL ITS BLUE ENDPOINT P:

minh:= k; minlen:= Hmjaﬁrﬁru_“ hi= k + 1;

while h <N do begin len:= length[h]; if len < minlen do begin minlen:= len; minh:= h end; hi= h + 1 end;
p:= to[minh];
COLDUR IT AND POINT P RED:
if k x minh do begin h:= ﬁﬁoamxu_w mwoaﬁxu"u ﬁﬁos?uaim dohosﬁawzinu h;
hi= to[k]; to[k]:= ta[minh]; to[mink]:= h;
len:= length[k}; length[k J:= length{minh]; length{minh]:= len

end;

ki= k + 1
ADJUST FOR EACH BLUE PDINT B BY COMPARING WITH THE BRANCH BP:

h:

k;
while h < N do
begin len:= awmﬁmjwmﬁu. woﬁjggu if len < Hmjaﬁjmjg do begin Hmjmwrﬁjgnu len; mHoaﬁrg"H p end: h:i= h + 1 end

T_u” A

while h << N do begin UHM:wmﬁﬁDEﬁj;v“ UHH:ﬁﬁwDﬁjgv“ rewlinz; h:= h + 1 end

OL - 91¢am3

EwD316 - T

The towers of Hanoi.

" Given three pegs, numbered 1, 2 and 3 and a set af N disks (N 2:1)
of decreasing diameter and a hole in their centre. At the heginning the N
disks are all on peg nr.l1 in order of decreasing diemeter, i.e. the largest
disk is at the bottom, the smallest is at the top side of the first peq.
The problem is to move this tower from the first peg to the third one in a
number of "moves", where a "move" is moving one disk from the top of a peg
to the top of another peg with the restriction that a larger disk may never
be placed on top of a smaller one. The second peg may be used as auxiliary

"store" for pegs which are "in the way".

Now, if we cam solve this game for any two pegs faor N = NO, WE can

also solve it for N = NO + 1. Call

movetower (m, A, B, C)

the set of moves that transports a tower of m disks from peg A (if necessary

via peg B) to peg C. The individual moves are of the form
movedisk{P, Q) .
The set of moves
movetower (NO +1, A, B, C)‘
is the same as that of the successive moves of

movetower (NO, A, C, B)
movedisk (A, C)

movetower (NO, B, A, C) .

In words: first a tower of N, disks is moved from A to B, using C as

0

auxiliary peg, then the N + 1st disk is moved directly from A to C and

0

finally the tower af N that has been placed fempnrarily on peg B is moved

09
to its final destimation C, using A as auxiliary peg. As the tower cansists

of the N_. smallest disks, the presence of larger disks will not cause

0
viplation of the condition of decreasing disk diameter. Moving a one-disk
tawer (NO = 1) presents no difficulty, and as a result the puzzle has been

solved, The question posed to us, however, is to make a program genmerating

the diskmoves in the order in which they have to take place.

EwD316 - 72

Note. It is not realistic to demand the execution of this program for large
. N
values of N hecause the total number of moves required = 2 = 1, Prove this

and prove also that the puzzle cannot be solved in a smaller number of moves.

The fact that a move with N > 1 is decomposed inta three "smaller"
moves, suggests that we keep a list of moves to be done. If the first one
to be done is simple, we do it; otherwise we replace it by its decomposition
and reconsider our obligations. In both cases, when we have a list of k

moves, only the first to be made needs consideration , and while we process

it, the remaining k-1 moves remain as standing obligations. This suggests that

we introduce

FﬂOVEk, move v MOVE mpve

k=1" 2’ 1
to be done in the order of decreasing subscript, in the order from left to

right. If move, is simple, it is made, leaving

MOVE | L _q +-c v MOVE,, move,
(indicating with k' the new value of k, the length of our list of standing

nbligatinns) ctherwise move, is replsced by thres others, leaving

1 t t
mnvek|=k+2, MOVES | 4 i+ ? mDUEk'—Q:k' move

K =Fakmt? T movez,

In both transformations the lower {i.e. later) k-1 moves have been

unaffected.

A move is given by four parameters, say

n = number of disks in the towsr tc be moved
from = number of source peg

via = number of auxiliary peg

to = numper af destination peg.

We can store these moves in four arrays "“integer array n, from, via,
’ ’

to [1:2*N—1]". (Verify that the list of obligations is never lonmger than

2*N-1 moves.) The non-simple move {with N > 1), given in tabular form by

n = from = via = to =

ke N A B C

is to be replaced by the triple

move

1

begin inteqer k; integer array n, from, via, to ﬁd"m*2|guw
jﬁﬁgnn N; ﬁHoaﬁgguu 1;: <wmﬁ4unu 2; &GﬁAQ"H 3; k= 1

repeat if :ﬁrg = 1 then
begin movedisk(from[k], to[k]);

xuﬂ_alu

els

begin jﬁr+mg"“ :ﬁrg -1 %Hoaﬁx+mu"n wﬁaaﬁxu“ <wmﬁx+m;“u wcﬁxu“ ﬁnﬁx+muuu <HmﬁxQ“
:hx+ﬂuuﬂ 1; ﬁHoaﬁx+_g"H ﬁhasﬁxum wnmx+4g"u ﬁoﬁr;m
:mru”n :ﬁr+QO mHaaﬂru"H wumr+mgm <wmﬁrgun ﬁHnaﬁx+mQ“ woﬁx@"u <wmﬁx+mg“
ke=k + 2

€L ~ 91gam3

EWD316 - 74

n' = from! = via' = to! =
kt=2 = k: N1 B A C
k'=1 = k+1: 1 A (8) C
k' = k=2 N-1 A C B

in which the top line replaces the original one, while the next two lines
are new. (In the middle line the element "via" has been put between brackets,
as it is immaterial; the program on the previous page leaves that value

unaf?ected.)

Remark. In the program we have not desscribed the details of the operation
"movedisk(A, B)". I it prints the number pair A, B, the solution will be
printed; if the machine is coupled to a mechanical hand which really moves

disks, the machine will play the game!

The reader is strongly advised to follow the above program himself
for a small value of N (say: 4) so as to see how the value of k goes up
and down. The reader is also invited to check carefully the "shunting" of
the values N(-1), A, B and C when a non-simple move is decomposed into
three simpler ones. This check is & painful process, so painful that
everyone who has done it, will only be too willing to admit that the
sbove program is rather ugly. The above program has been inmcluded with the
aim of making him more appreciative of the elegance of the se—called

"recursive solution™ which now follows.

begin procedure movetower (integer value m, A, B, E);

begin if m = 1 then movedisk (A, C)
else
begin mavetower (m=1, A, C, B);
movedisk (A, C);
movetower {(m—1, B, A, C)

erd

end;

movetower (N, 1, 2, 3)

EWD316 - 75

It introduces an operator named "movetower" with four (integer valued)
parameters, moving a tower of length m from A via B to C. In terms
of this operator the fimal program collapses into & single statement as
given in the last line, viz. "movetower (N, 1, 2, 3)". All that is given
in front of it (lirmes 2 to 8) describes this operator in terms of a little
program, little because the operator is allowed to invoke itself. The
definition of the operator {the so-called "procedurs body") follows our
original analysis af the game exactly. Recursive procedures ~i.e. procedures
that are allowed to invoke themselves— are such a powerful tool in programming

that we shall give some more examples of them.

Remark. Some af the more old-fashioned programming languages do not cater
for recursion, Programming courses based on such programming languages
often contain many examples that are only difficult because the recursive

solution is denied to the student.

EWD316 - 76

The problem of the eight queens.

The problem is to make a program genmerating all configurations of
eight‘queens on a chess hoard of 8 * 8 squares, such that no queen can
take any of the others. This means that in the configurations sought no
two gueens may be on the same row, on the same column or an the same

diagonal.

We don't have an operator generating all these configurations: this
operator is exactly what we have to make. Now a (very general!) way to
attack such a problem is as follows. Call the set of configurations to be
generated A; look for a greater set B of configurations with the following
properties
1) set A is & subset of set B
2) given an element of set B, it is not too difficult to decide whether

it belangs to set A as well

3) we can make an opsretar generating all elements of set B.

With the aid of the generator (3) for the elements of set B, the
elements af set B can then be genmerated in turn; they will be subjected to
the decision criterion (2) which dezides whether they have ta be ékipped
or handed over, thus generating elements of set A. Thanks to (1) this

algorithm will produce all elements of set A.

Three remarks are in order.
1) If the whole approach mekes sense, set B is not identical to set A
and as it must contain set A as a (true) subset, it must be larger. Never—
theless, it is advised to choose it "as small as possible": the more elements
it has, the more of them have to be rejected according to criterion (2).
2) We should look for a decision criterion that is cheap to apply, or
at least the discovery that am element of B dueslggi belorg to A should
(Dn the average) he cheap,
3) The assumption is that the generation of the elements of set B is
easier than a direct gemeration of the elements of set A, If, nevertheless,
the generation of the elemeﬁts of set B still presents difficulties, we
repeat our pattern of thinking, re-apply the trick and look for a still

larger set C af configurations that contains B as a subset etc. {The

EWD316 — T7

careful reader will observe that in the course of our solution this will

indeed happen.)

Above we have sketched a very general approach, applicable to many,
very different problems. Faced with a particular prablem, i.e. faced with

a specific set A, the problem is of course, what to select for our set B.

In a moment of optimism one could think that this is an easy matter,
thinking of the following technique. We list all the mutually independent
canditions that our elements of set A must satisfy and omit one of them.
Sometimes this works but as a general technique this is too nmaive; if we
want to see its shortcomings, we only need to apply it blindly to the
problem of the eight queens. We can characterize our solutions by the

conditions:

1) there are 8 queens on the board
2) no two af the queens can take eachother.

Omitting either of these conditions gives for the set B the alternatives
B1: all configurations with N queens on the board such that no two gueens
can take eachother
B2: all configurations of 8 gueens on the board.
But both sets are so ludicrously huge that they lead to utterly impractical

algorithms. We have to be smarter. How?-

Well, at this stage of our considerations, being slightly "st a lass",
we are not so much concerned with the efficiency of our final program but
rather with the efficiency of our own thought processes! So, if we decide
to make a list of the properties of solutions, in the hope of finding a
useful clue, this is a rather undirected search; we should not invest too
much mental erergy im such a search, that is: for a start we should restrict

curselves to their obvious properties. Let uS'go.ahead.

a) No row may contain more that one queen; 8 gueens are to be placed
and the chess board has exactly 8 rows. As a result we can conclude that
each row will contain preciéely one queen.

b) Similarly we conclude that each column will contain precisely one

queen.

EWD316 - 78

c) There are fifteen "upward" diagonals, each of them containing at most
one gueen, i.e. 8 upward diasgonals contain precisely ane queen and 7

upward diagonals are empty.

d) " 5imilarly we conclude that 8 downward diagonals are occupied by ane
gueen and 7 are empty,

e) Given any non—empty configuration of gueems such that ro two of them
can take eachother, removal of any of these gueens will result in a configur—

ation sharing that property.

Now the last one is a very important property: in our earlier
terminology it tells us something about any ron—empty configuratiorm fram
set Bl. Conversely it tells us that each non—empty configuration from set
Bl can be generated (in N different ways!) by extending a canfiguration
fraom Bl with N-1 queens by anpther gqueen. We have rejected Bl bhecause it
was too large, but maybe we can fimd a suitable subset of it, such that
each non—empty configuration is a one-gueen extension of only one other
configuration from the subset. This "extension property" suggests that we
are willing to consider configurations with less than 8 queens and that we
would like to form a new configuration by adding a queen to an existing
configuration —a relatively simple cperation presumably. Well, this draws
our attenticn immediately to the generation of the elements of the {still
mystericus) set B. For instance: in what order? And this again raises a
guestion to which, as yet, we have not paid the slightest attention: in
what order are we to generate the sclutions, i.e. the elements of set A7

Can we make a reasonable suggestion inm the hope of dexiving a clue from it?

Prior to that we should ask ourselves: how do we characterize
solutions once we have them? To characterize a solution we must give the
positions of 8 queens, The gqueens themselves are unordered, but the rows
and the columms are not: we may assume them to be numbered from O through 7.
Thanks to property a), which tells us that each row contains precisely are
queen, we car order the gueens according to the number of the row they
occupy. Then each configuration of 8 gqueens can be given by the value af

the integer array x[O:T], where

x[i] = the number of the column occupied by the gueen in the i-th row.

Each solution is then "an 8-digit word” (x[0] ... x[7]) and the only

EWD316 - 79

sensible order in which to generate these words that I can think of is the

alphabetical order.

Note.. As a consequence we open the way to algorithms in which rows and
columns are treated differemtly. At first sight this is surprising, because
the origimal problem is completely symmetrical in rows and columns, We
should be glad: to consider asymmetric algorithms is exactly what the above

considerations have taught us!

Returning to the alphabetical order: now we are approaching familiar
groung. If the elements of set A are to be generated in alphabetical order
and they have to be generated by selecting them from a larger set B, thenm
the standard technique is generating the elements of set B in alphabetical
order as well, and to produce the elements of the subset in the order in

which they occur in set B.

First we have to generate all solutions with x[0] = O, then all with
x[O] = 1 etc.; of the solutions with x[O] = 0 those with x[1] = 0 (if any)
have to be generated first, then those with x[1] =1 (if any), then those
with x[1] = 2 (if any) etc. In other words: the queen of row O is placed
in column O -say:.the square in the top left cormer— and remains there
until all elements of A (and B) with gqueen O in that position have been
generated, and only then is she moved one square to the right to the next
column. For each position of queen O, qﬁeen 1 will walk from left to right
in row 1 -skipping the squares that are covered by queen O-; for each
combined position of the first two gqueens, gqueen 2 walks along row 2 from

left to right, skipping all squares covered by the preceding gqueens, etc.

But now we have found set B! It is indeed a subset of Bl: set B

consists of

all configurations with ome queen in each of the first N rows, such

that no two queeng can take eachother.

Having established our choice for the set B, we find ourselves
immediately faced with the task of generating its elements in alphabetical
order. We could try to do this via an operator "GENERATE NEXT ELEMENT OF B"

what would lead to a program of the following structure:

EWD316 - 80

INITIALIZE EMPTY BOARD;

repeat GENERATE NEXT ELEMENT OF B;
if N = 8 do PRINT CONFIGURATION

until B EXHAUSTED

hut this is not attractive for the fellowing two reasons.

Firstly, we don't have a ready-made criterion to recognize the last
element of B when we meet it, and in all probability we have to generalize
the operator "GENERATE NEXT ELEMENT OF B" in such a way that it will produce
the indication "B EXHAUSTED" when it is applied to the last "true" element
uva. Secondly, it is not too obvious how to make the operatoxr "GENERATE
NEXT ELEMENT OF B": the number of gueens on the board may remain constant,

it may increase and it may decrease.

So that is not too attractive. What can we do about it? As long as
we regard the sequence of configurations from set B as a single sequence,
not subdivided into a succession of subsequences, the corresponding program
structure will be the single loop as im the program just sketched. If we
are looking for an alternative program structure, we must therefore ask
gurselves: "How can we group the sequences of caonfigurations from set B

into a succession of subsequences?",

Realizing that the segquence of configurations from set B has to be
generated in alphabetical order, and thinking of the main subdivision in a
dictionary -viz. by first letter-, the first grouping is obvious: by

position of queen O.

Generating all elements of set B —for the moment we forget about the
printing of the elements that beleong to the subset A as well- then presents

itself in the first instance as

h:= 0

repeat SET QUEEN ON SQUARE H;
GENERATE ALL CONFIGURATIONS WITH QUEEN O FIXED;
REMOVE QUEEN; :
hi= h + 1

until h=8

whére the operations SET QUEEN and REMOVE QUEEN pertain to row zero, i.e.

EWD316 ~ 81

the first free row or the last occupied row respectively.

. But now the gquestion repeats itself: how do we group all configurations
with queen O fixed? We have already given the answer: in order of increasing

column position of queen 1, i.e.

hl:= O;
repeat if SQUARE H1 FREE do
begin SET QUEEN ON SQUARE H1;
GENERATE ALL CONFIGURATIONS WITH FIRST 2 QUEENS FIXED;
REMOVE QUEEN
end;
hi:= b1 + 1
until b1 = 8

where, again, SQUARE FREE and SET QUEEN pertain to the first free row and
REMOVE QUEEN pertains to the last occupied row.

For "GENERATE ALL CONFIGURATIONS WITH FIRST 2 QUEENS FIXED" we could
write a similar piece of program and so on: inserting then inside eachother
would result in a correct program with some eight nested loops, but they
would all be very, very similar. To do so has two disadvantages:

1) it takes & cumbersome amount of writing

2) it gives a program solving the problem for a chess board of 8 * 8
squares, but to solve the same puzzle for a board of, say, 10 * 10 squares
would require a new (still longer) program. We would like to avoid this by

exploiting the similarity of the loops.

Then we have to answer two questions:
1) can we make the loops exactly identical?

2) can we then profit from their similarity?

The two exceptional cycles are the outermost one and the innermost
one. The outermost one is different because it does not test whether the
next square is free. There is, however, no objection to inserting this test:
as it is only applied when fhe board is empty it is guaranteed to give the
value true, and we can given the outermost cycle the same form by inserting

the conditional clause

EwD316 - 82

if SQUARE H FREE do

- The innermost cycle is exceptional in the sense that as soon as 8
queens have been placed aon the'board, there is no.point in generating all
canfigurations with those queens fixed, because we have a full board.

Instead the configuration has to be printed, bescause we have foumd an element
of set B that is also an element of set A. We can map the innermost cycle

and the embracing seven ones upon eachother by replacing the line "GENERATE"

Y {f BOARD FULL then PRINT CONFIGURATION
else GENERATE ALL CONFIGURATIONS EXTENDING THE CURRENT ONE.

By now the only differemnce between the eight cycles is that each
cycle has tg have "its private h". By the time that we have reached this
stage, we can give an affirmative answer to the second guestion., The
sequencing through the eight nested loops can be provoked with the aid
of a recursive procedure, "generate" say, which describes the cycle once.

Using it, the program itself collapses into

INITIALIZE EMPTY BOARD;

generate

while “"generate” is defined recursively as follows:

procedure generate;

begin integer h;

h:= O
repeat if SQUARE H FREE do
begin SET QUEEN ON SOQUARE Hj;
if BOARD FULL then PRINT CONFIGURATION
Blse generate;

REMOVE QUEEN

Fach activation of "generate" will introduce its private local

variable h, thus eatering for h, h1, h2, ... that we would need when

EWD316 - 83

writing B nested loops inside eachother. SQUARE H FREE and SET QUEEN ON
SQUARE H again refer to the first free row, the operation REMOVE QUEEN to

the last gccupied row.

Our program —although correct to this level of detail- is not yet
complete, i.,e. it has not been refinmed up to the standard degree of detail
that is required by our programming language. In our next refinement we
should decide upon the conventions according to which we represent the
configurations on the board. We have already decided more or less that

we shall use the

integer array x[0=7]

giving in order the column number occupied by the queens. We need a separate

convention to represent the number of queens on the board, Let us introduce
integer n, such that

n

x(1]

the number of queems on the board

for 0 < i< n: the number of the column occupied by the queen

in the i-th row.

The array x and the scalar n are together sufficient to Fix-any
configuration of the set B, and those will be the only ones on the chess
baard. As a result we have no logical need for maore variables; yet we shall
introduce a few more because from a practical point of view we camn make
good use of them. The problem is that with only the above material, the
analysis of whether a given sguare in the next free row is uncovered is
rather psinful and time—consuming. Here we can look for a standard technique,
called "trading storage space versus computation time". The pattern of this

technique is as follows.

In its most simple form we are faced with a computation that regularly
needs the value of FUN(arg) where "FUN" is a given, computable function
defined on the current value of one or more stored variables, cnllectivély
called "érg". In version 1 of a program, only thé-value of arg is stored and
the value of FUN(arg) is computed whenever nesded. In version 2, an additional
variable, "fun" say, is introduced with the sole purpose of recording the

value of "FUN{arg)" corresponding to the current value of "arg".

EwD316 - 84

Where version 1 has
argi= ... (i.e. assignment to arg)
version 2 has {effectively)
argi= ...; fun:= FUN(aIg) '
thereby maintaining the validity of the relation

fun = FUN(arg) -

Az 2 result of the validity of this relatien, wherever version
calls for the evaluation of FUN(arg), version 2 will call for the current

value of the variable "fun®.

The introduction of this redundant additional tabulated material is
one of the programmer's most powerful ways of improving the efficiercy of

a program. Of course we need our ingenuity for its irvention!

(Quite often the situation i= not as simple as that, and we come now
to the seccnd reason for introducing such a variable "fun". Often it is
veTry unattractive to compute FUN(arg) from scratch for arbitrary values of
arg while it is much easier to compute how the value of FUN(arg) changes
when the velue of arg is changed. In that case the adjustment cof the value
of fun is more intimately linked with the nature of the functional depencence
and the history of the variable arg than is suggested by

arg:= ...; fun:= FUN(arg) .

After this interlude won program optimizaticon yia trading storage space
versus computation time, we return to our eight queens. The role of "arg"
is played by the configuration cn the bpard, but this valie is not changed
wildly, oh no, the only thing we do to it is adding or removing a queen.
And we are looking for additional tables that will assist us in the decision
as to whether a square is free, tables such that they can be kapt up to date

gasily when & gueen is added to or removed from the configuration.

How? Well, we might think about a boolean array of 8 * 8, indicating
for each sguare whether it is free or not. If we do this for the full board,
adding a queen implies daaling with up to 29 sguares; removing a gueen,
haowever, is them a painful process because it does not follow that all

squares no longer covered by her are indeed free: they might be covered by

EwWD316 - 85

other queens, There is a standard remedy for this, viz. associating with
each square not a buolean variable but an integer counter, counting the
number of gueens covering the square. Adding a queen means increasing up to
29 counters by 1, removing a queen means decreasing up to 29 counters by 1
and a square is free when its counter is zern. We could do it that way,

but the guestion is whether this is not overdoing it: 29 adjustments is

quite a lot.

Each square, in the freedom of which we are interested, covers a row
(which is free by definition, so we need not bother about that) one of 8
columns (which must still be empty), one of 15 upward diagonals (which must
still be empty) and one of the 15 downward diagonals (which must still be
empty). This suggests that we should keep track of
1) the columns that are free
2) the upward diagonals that are free

3) the downward diagonals that are free.

As each column or diagonal is covered only once we don't need a
counter for each, but a boolean is sufficient. For the columns we introduce

® boolean array col[0:7]

where ﬂcol[i] means that the i=th column is still free.

How do we identify the diagenals? Well, along an upward diagonal the
difference between row number and column number is constant; along a downward
diagonal their sum. As a result difference and sum respectively. are the
easiest index by which to distinguish the diagonals, and we introduce

therefore

boolean array up[-7:+7], down[0:14]

to keep track of which diagonals are free.

The guestion whéther square[n,h] is free becomes
coi[h] and up(n-h] and down[n+h] ,

sétting and removing a queen both imply adjustment of three booleans, one

in each array.

Without the tabuléteﬂ material, REMOVE QUEEN would only consist of

EWD316 - 86

"mi=n =~ 1": now we would like to know her column number as well, i,e. we
replace it by REMOVE QUEEN FROM SQUARE H. In the final program, the variable
"k" is introduced for general counting purposes; statements and expressions

are labelled for explicative purposes.

This completes the treatmermt af our preblem; the program, incidentally,

generates 92 configurations.

By way of conclusior I would like to make up the bill: the final
solution is not very important (at least nat more important than the
problem of the eight queens). The importance of this section is to be found
in the methods an which pur final program relies, and the way in which we

have found them.

1) The final algorithm embpdies a very general technigue, so general that
it has a well-established name: it is called "backtracking". The configuration
of set B can be thought of as placed at the naodes of a hierarchical tree,
each node containing configuration C supporting the subtiree with &ll the
nodes with configurations C as a true sub-configuration. At the root of the
tree we have the empty configuration (from which B different branches
emanate). At each next level we find configurations with one gueen more and
at the top nodes {the leaves) we find the 92 solutions. The backtracking
algorithm generates and scans the nodes of this tree in a systematic manner.
I recommend the reader to become thoroughly familiar with the idea of
backtracking, because it can be applied when faced with a great number of

at first sight very different problems, (It is only when you recognize tﬁat
they all ask for a solutian by means of backtracking that the problems

become boringly similar to eachother.)

2) If the only thing the student gains from this section is his becoming
familiar with backtracking, he has learned something, but it was my intention
to teach him more: we showed all the considerations which together ran lead
to the discovery of our method, this time bhacktracking., But it is my firm
conviction that, when faced with a different problem to be solved by a

different method, the latter may be discovered by a very similar me?had.

3) The final program contained a recursive procedure. But backtracking

EwWD316 - 87

is by no means the only algorithmic pattern that is conveniently coded with
the aid of recursion. The main point was the collection of congiderations

leading to the discovery that in this case recursion was a appropriate tool.

4) The major part of our analysis has been carried out before we had
decided how (and how redundantly) a configuration would be represented

inside the machine. It is true that such considerations only bear fruit, when,
finally, a convenient representation for configurations can be found. Yet

it is essential not to bother sbout the represenmtation before it becames
crucial. There is a tendency among programmers to decide the (detailed)
representation conventions first and then to think about the algorithm in
terms of this specific representation, but that is putting the cart before

the horse. It implies that any later revision of the representation convention
implies that all thinking about the algorithm has to be redene; it fails to
give due recognition to the fact that the only point in manipulating {such
groups of) variables is that they stand for something else,'configurations

in pur case.

5) The trading of storage space versus computation time is more than a
trick that is useful in this particular program It is exemplar for many of
the choices a producing programmer has to make; he will work more consciously

and more reliably when he recognizes them as such.

Exercise. Write two programs generating for N > O all N! permutations of the
numbers 1 through N, one with and one without recursion, and establish the

correctness of both programs.

Exercise., For 0 < N <M g;nerate all integer solutions of the equations in
c[1] through ¢[N] such that
1) c[1]>0
2) cfi]=efi1] fort<i<N
3) e[1] + ...+ c[n] = Moo
Again, write two programs, one without and ane with recursion and

establish their correctness.

begin integer n, k; integer array x[0:7]; boglesn array col[0:7], up[-7:+7], down[0:14];
prucedure generate;
begin integer h; h:= O
repeat if SQUARE H FREE: (co1[h] and up[n=h] and down[nth]) do
begin SET QUEEN ON SQUARE H: . ,
x{n]:= h; col[h]:= false; up[n-h]:= false; down{n+h]:= false

¥

n:=n + 1

-

if BOARD FULL: (r = 8) then
begin PRINT CONFIGURATION: |
k:= O; repeat nHH:ﬁﬁxﬁxuvu.r"u k + 1 until k = 8; newline

end

else generate;
REMOVE QUEEN FROM SQUARE H:
n:=n — 1: aDEDH3+juuH true; :ﬁﬁjt:gnn true; nawﬁruun true

end;

INITIALTIZE EMPTY BOARD:

n:= 0; -

k:i= 0; repeat nmwﬁrw"u true; ki= k + 1 until k = 8;

k:= O; repeat up[k-7]:: true; down[k]:= mmmm“_x“u k + 1 until k = 15;
generate

- 91¢am3

212

EwD316 - 89

A rearranging routine.

* The following example has been inspired by the work of C,A.R.Haare

(Algorithm 64, C.A.C.M.).

The original problem was to rearrange the values of the elemernts of a

given array A[1 :N] and a given value of f (1 <=f< N} such that after the

rearrangement
for 1 <k < f Alk] < a[f]
for f <k <N Alk]=alf] . (1)

As & result of this rearrangement A[F] equals the f-th value in order
of non-decreasing magnitude. We call the array rearranged satisfying (1) "split
around f"; we call the final value of A[f] "the splitting value". When the
array has been split it is divided into two bhalves, the one half —-the "left~
hand" half, say- containing the "small" values and the other half —the "right-
hand" half, say— containing the large values, with the splitting value sand-
wiched in between. The overall function of the algorithm is to move small
values to the left and large values to the right. The difficulty is that
for given f the final value of A[f], i.e. our criterion "small/large", is

unknown to start with,

Hoare's inventiaon is the following. Select some rather arbitrary
criterion "small/large"; by moving small elements to the left and large elements
to the right, a split will be established somewhere, around some position,

If s happens to turn out = f, the original problem has been solved. The kernel
of Hoare's invention is the observation that in the other cases the original
problem can be reduced to the same problem, but now applied to one of the
halves, viz, to the left-hand half if f lies to the left of the split and to

the right-hand half if f lies to the right of the split.

Note.An alternative approach would be to sort thg»array completely: after
that A[f] will equal the f—th value in the order of non-decreasing magnitude,
But this can be expected tu-be rather expensive, for then we have established
relations (1) for all values of f. As a matter of fact we will arrive at a

rearranging routine which itself can be used for complete soxrting, on account

i

EwD316 - 90

of the fact that, when a split around s has been established, A[s} has the
value it is going to have in the completely sorted array, and that —because
all elements to the left of it are < A[s] and these to the right of it are
= A[s]- campletely sorting it could now be performed by sorting thereafter

the two parts independently.

We now focus our attention on the rearramging routirme which is to cause

a split in the array ssction

Alm] ... aln] with 1 <m<n<N .

When we try to make such a routine we are immediately faced with the
choice of our criterion "small/large". One of the ways is to select an
arbitrary element from the section, to call all elements larger than it
"large", all elements smaller than it "small” and zll elements equsl toc it
gither "large" or "small", just what is most convenient {in the final arrsngement
they may occur everywhere, either at the split or at either of its two sides).
Let us therefore postpone the choice in this discussion for a moment, as

there is a chance that we can use our freedom to some advantage.

We are going to select ane of the values in the array as the "splitting
value"; having chosen this value, its fimal position, i.e. the positicn of
the split, is unknown before the algorithm starts; it is defined when the
algorithm has been executed, in other werde it is determined by the evclution
of ths computation. This suggests that we build up the collection of the
small values, starting at the left-hand end, and that of the large values at
the right-hand end, and continue doing so until the two coellections meet
somewhere in the middle. To be more precise, we introduce two pointers,"i"
and "i" say, whose initial values will be "m" and "n" respectively, and
rearrange values in such a fashion that, when we call the splitting value

V, we ensure that

Alk]<V form<k <ji and

Alk] =V for j<k<n .

Having chosen the 'splitting value, the algoritbm will have the duty

of building up the collections of small and large values respectively from

EWD316 - 91

the outside inwards. The algorithm can start scanning, at the left—hand end
say, until a large element is encountered, If this occurs, this value has to
be removed from the collectipn of small values, i.e. it has to be added to
the collection of large elements. It is, as a matter of fact, the first
element whose "largeness" the algorithm has established: as we have decided
to build up the collections from the outside inwards, this large value has

to be assigned to A[n]. As we would like this position in the array to be

e
s

"free" -i.e. available to receive this first large value- the original
value of A[n] can be takem out of the array at the beginning and can be

chasen as the splitting value V.

That is, we initialize i = m and j = n and "take out" A[n] —-by assigning
it to the variable V= thereby initializing the situatipn where scanning
starts at element A[i], while "j" points ta the "hole" just made. When the
upward scan (under control of increasing "i") finds a large element, i.e.
when for the first time ALi] > V, this value is placed in the hale, now
leaving the hole in the place pointed to by "i". from then onwards a downward
scan (under control of decreasing "j") can operate until a small element has
been encountered which will ke placed in the hole at position "“i", leaving
the hole in the place pointed to by "j". Such upward and downward scans have
to succeed eachother alternately until 1 = j, i.e., until both point fto the
hole at the position around which the split has been effectuated. Finally

the hole receives the value V which had been taken out at the begimning.

The above sketch gives an infaormal description of the essential features
of the algorithm, it by no means settles the structure of the sequential

program that will embody it.

I have tried a prnQram in which the core consists of the program part
for the upward scan followed by the program pqrt-for the downward scan. The
first part consists of a loop with "i:= i + 1" in the repeatable statement;
the second part consists of a loop with "ji= j — 1" in the repeatable
statement. The two parts together then form the repeatable statement of an
outer loop. This program became very ugly and messy, the reason being that
termination may occur either becsuse the upward scan or because the downward

scan is on the verge of scanning the hole. The reasoning needed to establish

EwWD316 - g2

that the program did termimate properly became tortuaus.

- On account of that experience I have tried the alternative approach,
cne loop in which a single execution of the repeatable statement decreases
the difference "j = i" (i.e. the length of the unscanmned array section) by 1

by doirg a step of the appropriate scan,

The decision to control the steps of both scans by the same repeatable
statement calls for the imtroducticn of another variable; as we have to
digtinguish between only two cases, a boolean variable suffices, "up" say,

with the meaning:

up = true means: the algorithm is in the state of upward scan and j points
to the hole
up = false means: the algorithm is in the state of downward scan and i

points to the hole.
The initialization has to be extended with the assigrment "up:= true"; after

the initialirzation the program continues with
"while 1 < j do perform the appropriate step"

In the course of the action "perform the appropriate step", the value of "up”

has to change its value whenever the hole is filled and the scanning dirsctien

kas to reverse., Without apy further detours I arrived at the following procedure:

integer procedure split(real array a, integer wvalue m, n);

begin integer i, j; real V; boolean up;

i:=m; ji=n; Vi= a[j]; upi= true;
while i < j do
begin if up then
if ali] >V go begin a[j]i= a[i]; up:= false end
else _
if V> a[j] do beqin a[i]i= aj]; upi= true end;
if up then i:= i + 1 else ji= j = 1

end;

a[j]i= V; spliti= j

EwD316 — 93

In its applications we shall only call the procedure “split" with m < n;

as it stands it also caters for the case m = n.

Exercise.5how that in a version of split that only needs to cater for m <n,
its internal repetition could have been controlled by a repeat until clause

as well.

Note. At the price of a larger number of subscriptions to be performed, the
text of the procedure can be shortened by not introducing the separate variable

V, but by storing this value "in the hole", i.e.

V = if up then a[j] else a[i]

As a result the splitting value zigzags to its finmal positicn. With the above
convention the tests "a[i] > " and "V > a[j]" both become wali] > alj]", the

assignments "a[j]:: a[i]“ and ”a[i]:: a[j]" both became the interchange
wi= a[i]; a[i]i= e[j]; ali)=w

and the assignments "up:= false"™ and "up:= frue" can both be represented by
upi= non up

The abave considerations allow us to condense the procedure text into

integer procedure split(real array a, integer value m, n);

begin integer i, j; real W; boolean up;

ii=m; ji= n; up:= true;

while i < j do

begin if a[i]>a[j] do ‘
begin Wi= ali]; a[i]i= a[i}; alj]:= Wi upi= non up End;
Aif up then i:= 1 + 1 else ji= j - |

&nd;

splitei= j

end. (End of Note.)

We now returnm to our original problem: given an array A[1:N] and a
vaiue T {1 <f< N), rearrange the elements in such a way that
far 1 <i<f Ali] <a[f] and
for f<i<N Ali]>a[f]
as a result A[f] will equal the f-tb element in the order of non-decreasing

magnitude.

=)
&

EWD316 — 94

The idea is to apply the operator "split" first {o the original array
from 1 through N. The operator establishes the split somewhere, position s
say. 1f the position of the split coincides with f (f = s), we have reached
our goal, otherwise the operator "split" is applied to one of the halves, viz.

to the left-hand half when f << s and to the right-hand half when f > 5 etc.

For this purpose we introduce variables p and g, satisfying

l<p=sf<gxsN

such that A[p] .. A[q]

will be the section of the array to which the split will be applied, as this

section is certain to c¢ontain the (future) value of A[F].

If the split is found to the right of f (i.e. f <s) the operator has
to be applied to the left-band half, i.e. q has to be reset to s = 1 and p
can be left unchanged; in the case f > s, p has to be reset to s + 1 and g

can be left unchanged. We thus arrive at the routine

integer p, g, s;

pi=1; qi= N;

repeat s:= split(A, D, q);
if < g do gi= s - 1;
if > s do pi= s + 1

until f = g .

(Note. This program can call the routine "split" with m = n.)

We may wish to improve upon this program: it is rather superflusus to
call thz operator "split" with p = q: if the section consists of a single
element no (significant) rearrangement can take place: the split will be
around its single element and both halves will be empty. The relation p < g
gives us therefore another necessary criterion of continuation, and we can
look tc see whether we can make it the sole criterion for continuatian. Because
we want to stick to p < f < g, the termination via the luck of hitting f with
the split, i.e. f = s, has to generate p = f = q. The fellowing program

would achieve that result.

EWD316 - 95

integer p, q, s
pi= 15 q:= N;
while p<gqdo
begin s:= split(A, Dy q);
if f = s then begin pi= f; qi= T end

else if ¥ <s then q:= s - 1 else pi= 5 + 1

fraom the above program text it is obvious that the operator "split"

will only be applied to sections of the array containing at least two elements.

A more intricate use of the operator "split" is in complete sorting of
the array, observing that after application of the operator "split" at least
one element (viz. A[s]) has reached its final destination, while all other
elements, although not mecessarily im their final position, will be in the
correct half, so that complete sorting then consists of sorting both halves

independently.

The naive approach is a recursive

procedure sort(real array a, integer value P a);

begin integer s;

gi= split(a, Ps Q);
if p<s~1do sort(a, Py S5 — 1);
if s +1 < qgdo sort(a, s +1, q)

end

such that the call sort(A, 1, N}

will sort the entire array. Again it has been exploited that sorting an array
section is only a necesséry operation if the section contains at least two
elements. (The routine "sort" may be called with a section of only one element,

but it will not generate such calls itself.)

We have called the above procedure naive and we have done so for the
following reasons. The operator “split" may divide the section offered to it
intg two very inequal parts (e.g. when the originally rightmost element had

a near maximum value); as a result the maximum dynamic deptb of recursive calls

EWD316 - 86

may grow proportionally to N, the length of the array section. As recursive
calls require an amount of storage space praporticnal to the dynamic dapth,
the given program may turn out to be prohibitively demanding in its storage
requirements. This would lead to the conclusian that recursive sorting is
impractical, but for the fact that a slight rearrargement of the procedure
"sort" ensures that the maximum dynamic depth will not exceed log2 N. In
view of the existence of such a sorting procedursz we call the previous one

"maive".

We can guarantee that a sorting routinme will not generate a dynamic
depth exceeding log2 N, if whenever it has called "split", it will only
prescribe a recursive call on itself for the sorting of the smallest of the
two halves. (In the case that the two halves are of equal length, the choice
is immaterial.) Applying "sort" recursively to the smallest half only will
leave the other half unsorted, but this can be remedied by repeatedly applying
this only half-effective sorting effort to the still unsorted section., In the
body of "sort", two integers '"pu" and "gqu" are introduced, pointing to the

left~ and right-hand end of the still unsorted section.

procedure sort(;gal array a, integer value p, q);

begin integer s, pu, qu;

pui= p; qui= q;

while pu < qu do

begin s:i= split(a, pu, qu);
if qu -~ s <s - pu ihben

begqin if s + 1 < qgu do sort{a, s + 1, gqu); qui=s - 1 end

glse

begin if pu <s = 1 do sort(a, pu, s = 1}; pus=s + 1 end

Again, sort may be called with a section of a single element, but will

not generate such calls itself,

Exercise.Prove that termination of the loop is guaranteed to take place with

pu = qu. (This is less obvious than you might think!)

EwD316 - 97

Note. If, to start with, the elements of array A are ordered according to
non=-decreasing magnitude, excessive depth of recursive calls has keen prevented,
but the algorithm remains time—consuming (propnrtional to NZ). This has given
rise to refinememnts of the procedure "split": instead of blindly taking the
right-most element of the array section as splitting wvalue, some sort of

small search for a probably better approximation of the median value can be
inserted at the beginning of "split"; this element can be interchanged with

the rightmost element and thereafter split can continue as described.

	Contents
	Preface
	Some fundamental notions
	Programming languages and their implementation
	Variables and relations between their values
	Programs corresponding to recurrence relations
	A first example of step-wise program composition
	The shortest spanning subtree of a graph
	The towers of Hanoi
	The problem of the eight queens
	A rearranging routine

