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Metals bend. If you bend them far enough, then they don’t bend back when you release them—
they remain bent. This permanent deformation is called plastic deformation, and surprisingly
enough it still is very poorly understood.

What is known is this: plastic deformation in metals is caused by the concerted movement of
many microscopic, curve-like defects in the crystal lattice, called dislocations. The figure below
shows an artist’s impression of a dislocation.

sometimes termed the dislocation line, which, for the edge dislocation in Figure 4.3,
is perpendicular to the plane of the page. Within the region around the dislocation
line there is some localized lattice distortion. The atoms above the dislocation line
in Figure 4.3 are squeezed together, and those below are pulled apart; this is re-
flected in the slight curvature for the vertical planes of atoms as they bend around
this extra half-plane. The magnitude of this distortion decreases with distance away
from the dislocation line; at positions far removed, the crystal lattice is virtually per-
fect. Sometimes the edge dislocation in Figure 4.3 is represented by the symbol 
which also indicates the position of the dislocation line. An edge dislocation may
also be formed by an extra half-plane of atoms that is included in the bottom por-
tion of the crystal; its designation is a 

Another type of dislocation, called a screw dislocation, exists, which may be
thought of as being formed by a shear stress that is applied to produce the distor-
tion shown in Figure 4.4a: the upper front region of the crystal is shifted one atomic
distance to the right relative to the bottom portion. The atomic distortion associ-
ated with a screw dislocation is also linear and along a dislocation line, line AB in
Figure 4.4b. The screw dislocation derives its name from the spiral or helical path
or ramp that is traced around the dislocation line by the atomic planes of atoms.
Sometimes the symbol is used to designate a screw dislocation.

Most dislocations found in crystalline materials are probably neither pure edge
nor pure screw, but exhibit components of both types; these are termed mixed dis-
locations. All three dislocation types are represented schematically in Figure 4.5;
the lattice distortion that is produced away from the two faces is mixed, having vary-
ing degrees of screw and edge character.

The magnitude and direction of the lattice distortion associated with a dislo-
cation is expressed in terms of a Burgers vector, denoted by a b. Burgers vectors
are indicated in Figures 4.3 and 4.4 for edge and screw dislocations, respectively.
Furthermore, the nature of a dislocation (i.e., edge, screw, or mixed) is defined by
the relative orientations of dislocation line and Burgers vector. For an edge, they
are perpendicular (Figure 4.3), whereas for a screw, they are parallel (Figure 4.4);
they are neither perpendicular nor parallel for a mixed dislocation. Also, even
though a dislocation changes direction and nature within a crystal (e.g., from edge
to mixed to screw), the Burgers vector will be the same at all points along its line.
For example, all positions of the curved dislocation in Figure 4.5 will have the Burgers
vector shown. For metallic materials, the Burgers vector for a dislocation will point
in a close-packed crystallographic direction and will be of magnitude equal to the
interatomic spacing.
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Figure 4.3 The atom positions around an
edge dislocation; extra half-plane of atoms
shown in perspective. (Adapted from 
A. G. Guy, Essentials of Materials Science,
McGraw-Hill Book Company, New York,
1976, p. 153.)
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Figure 4.5
(a) Schematic

representation of a
dislocation that has

edge, screw, and
mixed character.

(b) Top view, where
open circles denote

atom positions
above the slip plane.

Solid circles, atom
positions below.
At point A, the

dislocation is pure
screw, while at point

B, it is pure edge.
For regions in

between where there
is curvature in the

dislocation line, the
character is mixed

edge and screw.
[Figure (b) from

W. T. Read, Jr.,
Dislocations in

Crystals, McGraw-
Hill Book Company,

New York, 1953.] (a)
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Figure 1: Left: a defect in the lattice. Right: zooming out, one sees that the defect is the boundary
of an area that has slipped. (From Callister [Cal07])

In real metals, there is a very large number of such curves, criss-crossing the material, as in
the figure below.

Figure 2: Another artist’s impression, this time of the network of dislocation curves. The atoms
are not shown, only the defect lines themselves are shown. (From paradis.stanford.edu)

It also is known that the permanent deformation that we mentioned above is the result of
movement of these defects; therefore, in order to understand the behaviour of the metal, one has
to understand how these curves move around, in response to external loading.

1

paradis.stanford.edu


This is a very hard problem, and science is nowhere near to solving it yet. In the meantime
we study much simpler problems, in the hope of developing understanding and tools that will
eventually allow us to address the big problems.

These simpler problems are typically systems of particles, each representing a single defect, as
a point on a line or a point in the plane. In the simplest case, such systems would evolve according
to a system of ordinary differential equations of the form

ẋi = −
n∑

j=1

V ′(xi − xj) + f, i = 1, . . . n. (1)

Here xi(t) is the position of defect i, represented as a point on the real line; the right-hand side
can be interpreted as the sum of forces generated by each of the other defects (the sum), and the
external load (f).

Sometimes a deterministic model such as this is not the right choice, and we study stochastic
models instead, of the form

dXi = −
n∑

j=1

V ′(Xi −Xj)dt + f dt + εdWi, i = 1, . . . n. (2)

Here Wi are i.i.d. Wiener processes.

There are many, many open questions about these equations, and about their limits as the
number n of particles tends to infinity. For instance,

1. What are the stationary points for the deterministic system (1)? How do they depend on
the interaction potential V and on the external load f?

2. Are there stationary points for the stochastic problem (2)? How does the behaviour depend
on the external load?

3. Are there regular structures, for instance equispaced configurations, that are stable?

4. What happens as the number n of dislocations tends to infinity? What is the right way to
consider that limit?

5. What is the influence of the noise parameter ε?

6. How do we introduce defects of different signs (‘Burgers vectors’ in the literature) that can
(partially or completely) cancel each other? What effect does that have?

7. How do defects interact with obstacles, such as grain boundaries? How can one describe this
in the limit n→∞?

In a Bachelor or Master project, we will discuss these possible questions, and together make a
choice that suits both of us.
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