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Machine learning algorithms are impressive. We hear about incredible achievements (see e.g.
this overview article1), and these achievements inspire both optimism and concern2.

At the same time, anyone who has actually tried to train a neural network, for instance, will
have noticed that this training feels like alchemy: lots of trial-and-error, and even when the final
result is good, we never really understand what was the crucial ingredient.

The good news is that in the last two or three years we are seeing great progress towards a
mathematical theory of machine learning. It’s still early, but the first signs are promising. Our
group is part of the growing group of mathematicians in developing such a mathematical theory of
machine learning, and there are many possibilities for bachelor and master students to participate.

Examples of project topics

1. A simple ‘student-teacher setup’. Chizat, Oyallon, and Bach [COB19] study a very
simple neural network, where a ‘student’ network learns the parameters of a ‘teacher’ net-
work. They show how the choice of the parameter at the start of training has far-reaching
consequences for the final parameter point that is found. Put simply: ‘Small initial parame-
ters lead to good trained networks; large initial parameters lead to bad ones’. Or differently:
‘if the student starts with small parameters, then the student manages to copy the teacher
network; but starting with large parameters, the student doesn’t manage to learn.’

This result leads to many questions, each of which could be the topic of a project. For
instance,

(a) In any practical situation, what is ‘small’ and what is ‘large’ may not be easy to
determine. How to do this in practice?

(b) Can we rigorously prove some of the experimental observations of Chizat, Oyallon, and
Bach? And thus understand when they apply and when not?

2. Mean-field limit of dropout neural networks. As many of the modern neural net-
works are significantly overparametrized, one of the interesting questions is: What happens
when we increase number of neurons? Or, more mathematically, is there a proper limit of
infinitely-wide neural networks? One of the well-behaved limits is the so-called mean-field
limit [SS20b]. It turns out that when trained with SGD, in the limit the dynamics of such
a model satisfies a measure-valued evolution equation.

At the same time, it is often practical to use various extensions of SGD such as dropout GD
(randomly turning off some neurons at every optimization step). In this project we want to
check whether arguments similar to [SS20b] apply to the mean-field limit of a neural network
trained with dropout SGD. Possible extensions and/or alternatives include

(a) Studying fluctuations of the process [SS20a]
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(b) Finding an optimal behaviour of the dropout rate pn (we would need to define ”optimal”
first)

(c) Comparing convergence results to [GKK23] (which one is stronger?)

(d) Deriving large-deviation theory for the model (this may be difficult)

3. The famous ‘Wojtowytsch collapse’. Wojtowytsch [Woj21a, Woj21b] showed that
stochastic gradient descent (SGD), the standard method to train networks, has different
behaviour depending on the dimension of the null set of the empirical loss. Again, in one
sentence: ‘If the network is very overparametrized, and the step size is sufficiently small,
then SGD converges almost surely to a global minimizer of the empirical loss’. This sounds
like something that one would want to have, but it also raises several questions, such as

(a) Good performance of the network is not the same as minimizing the empirical loss; in
fact, in experiments this a.s.-convergence to a global minimizer seems to be associated
with bad parameter points. How does this work?

(b) How does data augmentation (creating artificial data points, for instance by shifting
and flipping images) change the behaviour? It seems that Wojtowytsch’ result gives
handles to describe that.

4. Approximation properties of neural optimal transport maps. One of the key tasks
of machine leaning is density estimation (this is how you sample cat pictures). One possible
approach is to use optimal transport theory, namely approximate optimal transport maps
with functions given by neural networks; see for example [CAL21]. In this project we will
study how the approximation error of transport maps translates into the accuracy of the
density estimation, and try to answer the question: How big a should a neural network be
to reliably sample a pretty cat? Possible extensions are:

(a) Explicit comparison of different normalizing flows.

(b) Incorporating sample complexity into the error estimate [HR21].

What will you learn?

A project of this type will allow you to learn a number of topics and skills:

• What a neural network is, what it can do, and what it can not do

• How to describe such a network in mathematical terms, and how to use mathematics to
understand its properties

• How training such a network works in practice

• How to code up such a network yourself in Python

We will obviously adapt the level to whether you are doing a Bachelor or a Master project.

What do you need to know and have to do such a project?

Neural networks operate on the boundary between finite-dimensional and infinite-dimensional
mathematics. Networks have a finite number of parameters, but this number is inordinately large
(hundreds of millions of parameters is no exception). In addition, they operate on objects such as
images, videos, or time series, that also can be very high-dimensional.

In practice this means that there is an advantage in treating the number of parameters as
infinite, by working in an infinite-dimensional setting; in other words, in the setting of Functional
Analysis. Many types of evolution in infinite-dimensional systems, such as the stochastic gradient
descent mentioned above, are described by partial differential equations, and the theory of PDEs
therefore also plays a central role.

For a Bachelor project the requirements are
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• Introduction to Functional Analysis (2WAF0)

• Good coding skills in Python, and an interest in coding

• Having taking the bachelor PDE course (2WA90) is a plus, but not strictly necessary

For a Master project:

• Applied Functional Analysis (2MMA10)

• Scientific Computing (2MMN10) and Scientific Programming (2MMS20)

• Probability and Stochastics I (2MMS10)

• Good coding skills in Python, and an interest in coding

• Having taken Mathematics of Neural Networks (2MMA80) and/or and the master course
Partial Differential Equations (2MMA20) is definitely a plus, but they are not strictly nec-
essary
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